精英家教网 > 高中数学 > 题目详情

如图,在三棱锥S ­ABC中,平面EFGH分别与BC,CA,AS,SB交于点E,F,G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG.

求证:(1)AB∥平面EFGH;
(2)GH∥EF;
(3)GH⊥平面SAC.

见解析

解析证明(1)因为SA⊥平面EFGH,GH?平面EFGH,
所以SA⊥GH.
又因为SA⊥AB,SA,AB,GH都在平面SAB内,
所以AB∥GH.
因为AB?平面EFGH,GH?平面EFGH,
所以AB∥平面EFGH.
(2)因为AB∥平面EFGH,AB?平面ABC,
平面ABC∩平面EFGH=EF,
所以AB∥EF.
又因为AB∥GH,所以GH∥EF.
(3)因为SA⊥平面EFGH,SA?平面SAC,
所以平面EFGH⊥平面SAC,交线为FG.
因为GH∥EF,EF⊥FG,所以GH⊥FG.
又因为GH?平面EFGH,
所以GH⊥平面SAC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,..

(1)求证:平面PAB丄平面PCD
(2)如果AB=BC=2,PB=PC=求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在体积为的圆锥中,已知的直径,的中点,是弦的中点.

(1)指出二面角的平面角,并求出它的大小;
(2)求异面直线所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面,底面是平行四边形, 是 的中点。

(1)求证:
(2)求证:
(3)若,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角梯形ABCD中,ABCDADABCD=2AB=4,ADECD的中点,将△BCE沿BE折起,使得CODE,其中垂足O在线段DE内.

(1)求证:CO⊥平面ABED
(2)问∠CEO(记为θ)多大时,三棱锥CAOE的体积最大,最大值为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.

(1)求证:AC1∥平面CDB1
(2)求四面体B1C1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.

⑴试用半径表示出储油灌的容积,并写出的范围.
⑵当圆柱高与半径的比为多少时,储油灌的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,圆锥的轴截面为等腰直角为底面圆周上一点.

(1)若的中点为,
求证:平面
(2)如果,,求此圆锥的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的三视图如下图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.是侧棱上的动点.

(1)求证:
(2)若的中点,求直线与平面所成角的正弦值;
(3) 若四点在同一球面上,求该球的体积.

查看答案和解析>>

同步练习册答案