函数
的图象大致是( )
![]()
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
设
,函数
.
(1)若
,求函数
在区间
上的最大值;
(2)若
,写出函数
的单调区间(不必证明);
(3)若存在
,使得关于
的方程
有三个不相等的实数解,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年广东省广州市毕业班综合测试一文科数学试卷(解析版) 题型:解答题
如图,在棱长为
的正方体
中,点
是棱
的中点,点
在棱
上,且满足
.
![]()
(1)求证:
;
(2)在棱
上确定一点
,使
、
、
、
四点共面,并求此时
的长;
(3)求几何体
的体积.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)仿真模拟卷2练习卷(解析版) 题型:填空题
已知F1,F2是双曲线
-y2=1的两个焦点,点P在此双曲线上,
·
=0,如果点P到x轴的距离等于
,那么该双曲线的离心率等于________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)仿真模拟卷1练习卷(解析版) 题型:解答题
如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE.
![]()
(1)若F为PE的中点,求证:BF∥平面ACE;
(2)求三棱锥P-ACE的体积.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷5练习卷(解析版) 题型:解答题
已知椭圆E:
=1(a>b>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线l:x=
的距离为3.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点A,B,且
⊥
,求出该圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com