精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M($\sqrt{3}$,$\frac{1}{2}$)对应的参数φ=$\frac{π}{6}$,射线θ=$\frac{π}{3}$与曲线C2交于点D(1,$\frac{π}{3}$).
(1)求曲线C1,C2的直角坐标系方程;
(2)若点A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)都在曲线C1上,求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

分析 (1)先求出a=2,b=1,由此能求出曲线C1的直角坐标方程;把点D的极坐标化为直角坐标代入圆C2的方程为(x-R)2+y2=R2,求得R=1,即可得到曲线C2的方程.
(2)把A、B两点的极坐标,代入曲线C1极坐标方程可得$\frac{{{ρ}_{1}}^{2}co{s}^{2}θ}{4}$+${{ρ}_{1}}^{2}si{n}^{2}θ=1$,$\frac{{{ρ}_{2}}^{2}si{n}^{2}θ}{4}$+${{ρ}_{2}}^{2}co{s}^{2}θ=1$,由此能求出$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

解答 解:(1)∵曲线C1的参数方程为$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数),曲线C1上的点M($\sqrt{3}$,$\frac{1}{2}$)对应的参数φ=$\frac{π}{6}$,
∴$\left\{\begin{array}{l}{acos\frac{π}{6}=\sqrt{3}}\\{bsin\frac{π}{6}=\frac{1}{2}}\end{array}\right.$,解得a=2,b=1,
∴曲线C1的直角坐标系方程为:$\frac{{x}^{2}}{4}+{y}^{2}$=1.
设圆C2的半径R,则圆C2的方程为:ρ=2Rcosθ(或(x-R)2+y2=R2),
将点D(1,$\frac{π}{3}$)代入得:1=2Rcos$\frac{π}{3}$,∴R=1
∴圆C2的方程为:ρ=2cosθ(或(x-1)2+y2=1)…(5分)
(2)曲线C1的极坐标方程为:$\frac{{ρ}^{2}co{s}^{2}θ}{4}$+ρ2sin2θ=1,
∵点A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)都在曲线C1
将点A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)代入得:$\frac{{{ρ}_{1}}^{2}co{s}^{2}θ}{4}$+${{ρ}_{1}}^{2}si{n}^{2}θ=1$,$\frac{{{ρ}_{2}}^{2}si{n}^{2}θ}{4}$+${{ρ}_{2}}^{2}co{s}^{2}θ=1$,
∴$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$=($\frac{co{s}^{2}θ}{4}$+sin2θ)+($\frac{si{n}^{2}θ}{4}$)+cos2θ=$\frac{5}{4}$.…(10分)

点评 本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知△ABC中,$\overrightarrow{AB}=4\overrightarrow i+3\overrightarrow j$,$\overrightarrow{AC}=-3\overrightarrow i+4\overrightarrow j$,其中$\overrightarrow i、\overrightarrow j$是基本单位向量,则△ABC的面积为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数;1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{an}为“斐波那契数列”.那么$\frac{{a}_{1}^{2}+{a}_{2}^{2}+{a}_{3}^{2}+{a}_{4}^{2}+…+{a}_{100}^{2}}{{a}_{100}}$是斐波那契数列中的第101项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且过点(0,$\sqrt{3}$).
(I)求椭圆C的方程;
(Ⅱ)设P是椭圆C长轴上的一个动点,过P作斜率为$\frac{\sqrt{3}}{2}$的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知tanα=2,求cos4α-2sinαcosα-sin4α的值.
(2)若函数f(x)=cos4x-2sinxcosx-sin4x,x∈[0,$\frac{π}{2}$),求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A是抛物线y2=4x上的点,若在圆C:(x-6)2+y2=$\frac{21}{4}$上总存在点B,使得∠BAC=30°,其中C为圆心,那么点A的横坐标的取值范围为[4-$\sqrt{6}$,4+$\sqrt{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,直线AB∥CD∥EF,若AC=3,CE=4,则$\frac{BD}{BF}$的值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.画出下列不等式表示的平面区域.
(1)x-y+1<0;
(2)2x+3y>6;
(3)2x+5y-10≥0;
(4)y≥$\frac{4}{3}$x-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知M(x1,y1),N(x2,y2)是双曲线线$\frac{{x}^{2}}{2}$-y2=1上的两个动点,且x1+x2=1,若线段MN的垂直平分线过定点Q,则Q点的坐标为(  )
A.($\frac{1}{2}$,0)B.($\frac{3}{4}$,1)C.(0,$\frac{1}{2}$)D.($\frac{3}{4}$,0)

查看答案和解析>>

同步练习册答案