精英家教网 > 高中数学 > 题目详情
5.若($\frac{1}{2}$x-2y)2n+1的展开式中前n+1项的二项式系数之和为64,则该展开式中x4y3的系数是(  )
A.-$\frac{35}{2}$B.70C.$\frac{35}{2}$D.-70

分析 根据($\frac{1}{2}$x-2y)2n+1展开式中前n+1项的二项式系数之和等于后n+1项的和,
求出n的值,再利用展开式的通项公式求出x4y3的系数.

解答 解:($\frac{1}{2}$x-2y)2n+1展开式中共有2n+2项,
其前n+1项的二项式系数之和等于后n+1项和,
∴22n+1=64×2,解得n=3;
∴($\frac{1}{2}$x-2y)7展开式中通项公式为
Tr+1=${C}_{7}^{r}$•${(\frac{1}{2}x)}^{7-r}$•(-2y)r
令r=3,得展开式中x4y3的系数是
${C}_{7}^{3}$•${(\frac{1}{2})}^{4}$•(-2)3=-$\frac{35}{2}$.
故选:A.

点评 本题考查了二项式展开式的通项公式与二项式系数的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.抛物线y=$\frac{1}{8}$x2的焦点坐标为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1右焦点为F,P为双曲线左支点上一点,点A(0,$\sqrt{2}$),则△APF周长的最小值为(  )
A.4(1+$\sqrt{2}$)B.4+$\sqrt{2}$C.2($\sqrt{2}$+$\sqrt{6}$)D.$\sqrt{6}$+3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)的定义域为R,f(x)=$\left\{{\begin{array}{l}{x,0≤x<1}\\{{{(\frac{1}{3})}^x}-1,-1≤x<0}\end{array}}$且对任意的x∈R都有f(x+1)=f(x-1),若在区间[-1,5)上函数g(x)=f(x)-mx-m恰有4个不同零点,则实数m的取值范围是(  )
A.$({0,\frac{1}{4}}]$B.$({\frac{1}{4},\frac{1}{2}}]$C.$[{\frac{1}{4},\frac{1}{2}})$D.$({0,\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆E:x2+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<1)的左焦点为F,左、右顶点分别为A、C,上顶点为B,过F、B、C三点作圆P.
(Ⅰ)若圆P的圆心在直线x+y=0上,求椭圆E的方程;
(Ⅱ)若直线y=x+t交(Ⅰ)中椭圆E于M,N,交y轴于Q,求|MN|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1
(1)求证:平面A1BC⊥平面ABC1
(2)若直线AA1与底面ABC所成的角为60°,求直线AA1与平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.要计算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2017}$的结果,如图程序框图中的判断框内可以填(  )
A.n<2017B.n≤2017C.n>2017D.n≥2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的实轴长为2,离心率为$\sqrt{5}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{16}$=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$$-\frac{{y}^{2}}{3}$=1D.x2$-\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木捅一层层堆放成坛状,最上一层长有a个,宽有b个,共计ab个木桶.每一层长宽各比上一层多一个,共堆放n层,设最底层长有c个,宽有d个,则共计有木桶$\frac{n[(2a+c)b+(2c+a)d+(d-b)]}{6}$个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.则木桶的个数为(  )
A.1260B.1360C.1430D.1530

查看答案和解析>>

同步练习册答案