精英家教网 > 高中数学 > 题目详情
10.如图,在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1
(1)求证:平面A1BC⊥平面ABC1
(2)若直线AA1与底面ABC所成的角为60°,求直线AA1与平面ABC1所成角的正弦值.

分析 (1)推导出BC⊥侧面ACC1A1,所以AC1⊥BC,再由A1B⊥AC1,得到AC1⊥面A1BC,由此能证明面ABC1⊥面A1BC.
(2)利用等体积方法,求出A1到平面ABC1的距离,即可求直线AA1与平面ABC1所成角的正弦值.

解答 (1)证明:因为底面ABC是等腰直角三角形,CA=CB,所以BC⊥AC
因为侧面ACC1A1⊥底面ABC,侧面ACC1A1∩底面ABC=AC,
所以BC⊥侧面ACC1A1,所以AC1⊥BC,
又A1B⊥AC1,而A1B∩BC=B,
所以AC1⊥面A1BC,
又AC1?面ABC1,所以面ABC1⊥面A1BC;
(2)解:由题意,∠A1AC=60°,四边形ACC1A1是菱形.
设AC=2,则AB=2$\sqrt{2}$,AC1=2$\sqrt{3}$,BC1=2$\sqrt{2}$,∴${S}_{△AB{C}_{1}}$=$\frac{1}{2}×2\sqrt{2}×\sqrt{8-3}$=$\sqrt{10}$
设A1到平面ABC1的距离为h,则$\frac{1}{3}×\sqrt{10}×h$=$\frac{1}{3}×\frac{1}{2}×2\sqrt{3}×1×2$,
∴h=$\frac{\sqrt{30}}{5}$,
∴直线AA1与平面ABC1所成角的正弦值=$\frac{\frac{\sqrt{30}}{5}}{2}$=$\frac{\sqrt{30}}{10}$.

点评 本题考查线面垂直、面面垂直的证明,考查线面角,考查学生的计算能力,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=cos(2x-\frac{π}{3})-{sin^2}x+\sqrt{3}sinxcosx$(x∈R).
(1)求函数f(x)的最大值和最小正周期;
(2)若0<α<π,且$f(\frac{α}{2})=\frac{1}{2}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若将函数f(x)=1+sinωx(0<ω<4,ω∈Z)的图象向右平移$\frac{π}{3}$个单位后,得到函数y=g(x)的图象,且y=g(x)的图象的一条对称轴方程为x=$\frac{π}{2}$,则分f(x)的最小正周期为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}中,a1=2,an-an-1=2n,(n≥2,n∈N*).
(Ⅰ)写出a2,a3的值,并求出{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+$\frac{1}{{a}_{n+3}}$+…+$\frac{1}{{a}_{2n+1}}$,且bn≤m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若($\frac{1}{2}$x-2y)2n+1的展开式中前n+1项的二项式系数之和为64,则该展开式中x4y3的系数是(  )
A.-$\frac{35}{2}$B.70C.$\frac{35}{2}$D.-70

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在推理“因为y=sinx在[0,$\frac{π}{2}$]上是增函数,所以sin$\frac{3π}{7}$>sin$\frac{2π}{5}$”中,大前提是y=sinx在[0,$\frac{π}{2}$]上是增函数;小前提是$\frac{3π}{7}$>$\frac{2π}{5}$且 $\frac{3π}{7}$,$\frac{2π}{5}$∈[0,$\frac{π}{2}$];结论是sin$\frac{3π}{7}$>sin$\frac{2π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将数字“124467”重新排列后得到不同的偶数个数为(  )
A.72B.120C.192D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|0<x≤3,x∈N},B={x|y=$\sqrt{{x}^{2}-9}$},则集合A∩(∁RB)=(  )
A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名.
(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?
(2)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
选择自然科学类选择社会科学类合计
男生6045105
女生304575
合计9090180
附:${K^2}=\frac{{n{{({ab-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
K00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案