| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数图象的对称性,求得ω的值,进而利用正弦函数的周期公式即可计算得解.
解答 解:将函数f(x)=1+sinωx的图象向右平移$\frac{π}{3}$个单位后,
得到的图象对应的解析式为:y=g(x)=sin[ω(x-$\frac{π}{3}$)]+1=sin(ωx-$\frac{ωπ}{3}$)+1,
∵y=g(x)的图象的一条对称轴方程为x=$\frac{π}{2}$,
∴$\frac{π}{2}$ω-$\frac{ωπ}{3}$=kπ+$\frac{π}{2}$,k∈Z,解得:ω=6k+3,k∈Z,
∵0<ω<4,
∴ω=3,可得:f(x)=1+sin3x,
∴f(x)的最小正周期为T=$\frac{2π}{3}$.
故选:C.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数图象的对称性,三角函数周期公式的应用,考查了数形结合思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4(1+$\sqrt{2}$) | B. | 4+$\sqrt{2}$ | C. | 2($\sqrt{2}$+$\sqrt{6}$) | D. | $\sqrt{6}$+3$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{1}{4}}]$ | B. | $({\frac{1}{4},\frac{1}{2}}]$ | C. | $[{\frac{1}{4},\frac{1}{2}})$ | D. | $({0,\frac{1}{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com