精英家教网 > 高中数学 > 题目详情
15.在推理“因为y=sinx在[0,$\frac{π}{2}$]上是增函数,所以sin$\frac{3π}{7}$>sin$\frac{2π}{5}$”中,大前提是y=sinx在[0,$\frac{π}{2}$]上是增函数;小前提是$\frac{3π}{7}$>$\frac{2π}{5}$且 $\frac{3π}{7}$,$\frac{2π}{5}$∈[0,$\frac{π}{2}$];结论是sin$\frac{3π}{7}$>sin$\frac{2π}{5}$.

分析 由题意,根据三段论的形式“大前提,小前提,结论”直接写出答案即可

解答 解:用三段论的形式写出“因为y=sinx在[0,$\frac{π}{2}$]上是增函数,所以sin$\frac{3π}{7}$>sin$\frac{2π}{5}$”中,”的演绎推理是:
大前提    y=sinx在[0,$\frac{π}{2}$]上是增函数
小前提    $\frac{3π}{7}$>$\frac{2π}{5}$ 且  $\frac{3π}{7}$,$\frac{2π}{5}$∈[0,$\frac{π}{2}$]
结论      sin$\frac{3π}{7}$>sin$\frac{2π}{5}$
故答案为:y=sinx在[0,$\frac{π}{2}$]上是增函数,$\frac{3π}{7}$>$\frac{2π}{5}$ 且  $\frac{3π}{7}$,$\frac{2π}{5}$∈[0,$\frac{π}{2}$],sin$\frac{3π}{7}$>sin$\frac{2π}{5}$

点评 本题考查演绎推理--三段论,解题的关键是理解三段论的形式,本题是基础概念考查题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设M是△ABC边BC上的任意一点,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.古代数学家杨辉在沈括的隙积数的基础上想到:若由大小相等的圆球剁成类似于正四棱台的方垛,上底由a×a个球组成,杨辉给出求方垛中圆球总数的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$),根据以上材料,我们可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若集合A={x|1≤3x≤81},B={x|log2(x2-x)>1},则A∩B=(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1
(1)求证:平面A1BC⊥平面ABC1
(2)若直线AA1与底面ABC所成的角为60°,求直线AA1与平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤6}\\{x≥1}\end{array}\right.$,则z=2|x-2|+|y|的最小值是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在R上的函数f(x)满足:f(2)=1,且对于任意的x∈R,都有f′(x)<$\frac{1}{3}$,则不等式f(log2x)>$\frac{lo{g}_{2}x+1}{3}$的解集为{x丨0<x<4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且$\overrightarrow{AO}$=3$\overrightarrow{MO}$,则$\overrightarrow{MB}$$•\overrightarrow{MC}$的值是(  )
A.-$\frac{5}{3}$B.-$\frac{7}{6}$C.-$\frac{7}{3}$D.-$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\sqrt{4-|{ax-2}|}({a≠0})$.
(1)求函数f(x)的定义域;
(2)若当x∈[0,1]时,不等式f(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案