精英家教网 > 高中数学 > 题目详情
5.设M是△ABC边BC上的任意一点,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

分析 设$\overrightarrow{BM}$=t$\overrightarrow{BC}$,根据向量的加减的几何意义,表示出$\overrightarrow{AN}$,即可找到λ和μ的关系,从而求出λ+μ的值.

解答 解:设$\overrightarrow{BM}$=t$\overrightarrow{BC}$(0≤t≤1),$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,
所以$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{AM}$=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{BM}$)=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$t$\overrightarrow{BC}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$t($\overrightarrow{AC}$-$\overrightarrow{AB}$)=($\frac{1}{4}$-$\frac{1}{4}$t)$\overrightarrow{AB}$+$\frac{1}{4}$t$\overrightarrow{AC}$,
因为$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,
所以λ+μ=$\frac{1}{4}$-$\frac{1}{4}$t+$\frac{1}{4}$t=$\frac{1}{4}$,
故选:A

点评 本题主要考查了平面向量的基本定理,即平面内任一向量都可由两不共线的向量唯一表示出来.属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图1所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2所示五棱锥P-ABFED,且AP=$\sqrt{30}$,
(1)求证:BD⊥平面POA;
(2)求二面角B-AP-O的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用辗转相除法求240和288的最大公约数时,需要做2次除法;利用更相减损术求36和48的最大公约数时,需要进行3次减法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α是第二象限角,且3sinα+4cosα=0,则tan$\frac{α}{2}$=(  )
A.2B.$\frac{1}{2}$C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=cos(2x-\frac{π}{3})-{sin^2}x+\sqrt{3}sinxcosx$(x∈R).
(1)求函数f(x)的最大值和最小正周期;
(2)若0<α<π,且$f(\frac{α}{2})=\frac{1}{2}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知某组合体的正视图与侧视图相同,如图所示,其中AB=AC,四边形BCDE为矩形,则该组合体的俯视图可以是①②③④(把你认为正确的图的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|y=lg(x-2x2)},则∁R(A∩B)=(  )
A.[0,$\frac{1}{2}$)B.(-∞,0)∪[$\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.(-∞,0]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在($\sqrt{x}$-1)4•(x-1)2的展开式中,x项的系数为(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在推理“因为y=sinx在[0,$\frac{π}{2}$]上是增函数,所以sin$\frac{3π}{7}$>sin$\frac{2π}{5}$”中,大前提是y=sinx在[0,$\frac{π}{2}$]上是增函数;小前提是$\frac{3π}{7}$>$\frac{2π}{5}$且 $\frac{3π}{7}$,$\frac{2π}{5}$∈[0,$\frac{π}{2}$];结论是sin$\frac{3π}{7}$>sin$\frac{2π}{5}$.

查看答案和解析>>

同步练习册答案