| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
分析 设$\overrightarrow{BM}$=t$\overrightarrow{BC}$,根据向量的加减的几何意义,表示出$\overrightarrow{AN}$,即可找到λ和μ的关系,从而求出λ+μ的值.
解答 解:设$\overrightarrow{BM}$=t$\overrightarrow{BC}$(0≤t≤1),$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,
所以$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{AM}$=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{BM}$)=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$t$\overrightarrow{BC}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$t($\overrightarrow{AC}$-$\overrightarrow{AB}$)=($\frac{1}{4}$-$\frac{1}{4}$t)$\overrightarrow{AB}$+$\frac{1}{4}$t$\overrightarrow{AC}$,
因为$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,
所以λ+μ=$\frac{1}{4}$-$\frac{1}{4}$t+$\frac{1}{4}$t=$\frac{1}{4}$,
故选:A
点评 本题主要考查了平面向量的基本定理,即平面内任一向量都可由两不共线的向量唯一表示出来.属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | -2 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{1}{2}$) | B. | (-∞,0)∪[$\frac{1}{2}$,+∞) | C. | (0,$\frac{1}{2}$) | D. | (-∞,0]∪[$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com