精英家教网 > 高中数学 > 题目详情
15.如图1所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2所示五棱锥P-ABFED,且AP=$\sqrt{30}$,
(1)求证:BD⊥平面POA;
(2)求二面角B-AP-O的正切值.

分析 (1)证明PO⊥BD,AO⊥BD,可得BD⊥平面APO,
(2)以O为原点,OA为x轴,OF为y轴,OP为z轴,建立坐标系,则O(0,0,0),A(3$\sqrt{3}$,0,0),P(0,0,$\sqrt{3}$),B($\sqrt{3}$,2,0),求出平面OAP的一个法向量,平面ABP的一个法向量即可

解答 证明:(1)PO⊥EF,AO⊥EF,所以EF⊥平面POA,因为BD∥EF
∴BD⊥平面POA
则PO⊥BD,又AO⊥BD,AO∩PO=O,AO?平面APO,PO?平面APO,
∴BD⊥平面APO,
(2)因为AP=$\sqrt{30}$,可证PO⊥AO,所以EF,PO,AO互相垂直
以O为原点,OA为x轴,OF为y轴,OP为z轴,建立坐标系,
则O(0,0,0),A(3$\sqrt{3}$,0,0),P(0,0,$\sqrt{3}$),B($\sqrt{3}$,2,0),
设$\overrightarrow{n}$=(x,y,z)为平面OAP的一个法向量,
则$\overrightarrow{n}$=(0,1,0),$\overrightarrow{m}$=(x,y,z)为平面ABP的一个法向量,
$\overrightarrow{AB}$=(-2$\sqrt{3}$,2,0),$\overrightarrow{AP}$=(-3$\sqrt{3}$,0,$\sqrt{3}$),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=-2\sqrt{3}x+2y=0}\\{\overrightarrow{m}•\overrightarrow{AP}=-3\sqrt{3}x+\sqrt{3}z=0}\end{array}\right.$,令x=1,则y=$\sqrt{3}$,z=3,
则$\overrightarrow{m}$=(1,$\sqrt{3}$,3)….cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{13}}$,∴tanθ=$\frac{\sqrt{30}}{3}$
∴二面角B-AP-O的正切值为$\frac{\sqrt{30}}{3}$

点评 本题考查了空间线面垂直的判定,及向量法求二面角,考查了空间问题处理的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.高三(1)班某一学习小组的A、B、C、D四位同学周五下午参加学校的课外活动,在课外活动时间中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在跑步.
①A不在散步,也不在打篮球;
②B不在跳舞,也不在跑步;
③“C在散步”是“A在跳舞”的充分条件;
④D不在打篮球,也不在跑步;
⑤C不在跳舞,也不在打篮球.
以上命题都是真命题,那么D在画画.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{lg({x}^{2}-1)}{\sqrt{{x}^{2}-x-2}}$的定义域为(  )
A.(-∞,-2)∪(1,+∞)B.(-2,1)C.(-∞,-1)∪(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(  )
A.1365石B.338石C.169石D.134石

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.SC为球O的直径,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=$\frac{π}{4}$,若棱锥A-SBC的体积为$\frac{4\sqrt{3}}{3}$,则球O的体积为$\frac{32}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直角梯形ABCD绕底边AD所在直线EF旋转,在旋转前,非直角的腰的端点A可以在DE上选定.当点A选在射线DE上的不同位置时,形成的几何体大小、形状不同,分别画出它的三视图并比较其异同点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=sin2x图象上的某点P($\frac{π}{12}$,m)可以由函数y=cos(2x-$\frac{π}{4}$)上的某点Q向左平移n(n>0)个单位长度得到,则mn的最小值为(  )
A.$\frac{5π}{24}$B.$\frac{5π}{48}$C.$\frac{π}{8}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设M是△ABC边BC上的任意一点,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步练习册答案