精英家教网 > 高中数学 > 题目详情
4.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于$\frac{\sqrt{6}}{4}$.

分析 根据正三棱柱及线面角的定义知,取A1C1的中点D1,∠B1AD1是所求的角,再由已知求出正弦值.

解答 解:取A1C1的中点D1,连接B1D1,AD1
在正三棱柱ABC-A1B1C1中,B1D1⊥面ACC1A1
则∠B1AD1是AB1与侧面ACC1A1所成的角,
∵正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,
∴sin∠B1AD1=$\frac{{B}_{1}{D}_{1}}{A{B}_{1}}$=$\frac{\frac{\sqrt{3}}{2}AB}{\sqrt{2}AB}$=$\frac{\sqrt{6}}{4}$,
故答案为:$\frac{\sqrt{6}}{4}$.

点评 本题主要考查了线面角问题,求线面角关键由题意过线上一点作出面的垂线,再求线面角的正弦值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)已知α,β都是锐角,cosα=$\frac{4}{5}$,cos(α+β)=-$\frac{5}{13}$,求cosβ的值.
(2)若cos($\frac{π}{4}$-α)=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2所示五棱锥P-ABFED,且AP=$\sqrt{30}$,
(1)求证:BD⊥平面POA;
(2)求二面角B-AP-O的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x-1.
(1)求f(x)的函数解析式;
(2)写出函数f(x)的单调区间及最值;
(3)当关于x的方程f(x)=m有四个不同的解时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线的右焦点F为圆x2+y2-4x+3=0的圆心,且其渐近线与该圆相切,则双曲线的标准方程是$\frac{x^2}{3}-{y^2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图三棱柱ABC-A1B1C1,AB=BC=CA,D,D1分别是BC,B1C1的中点,四边形ADD1A1是菱形,且平面ADD1A1⊥平面CBB1C1
(Ⅰ)求证:四边形CBB1C1为矩形;
(Ⅱ)若$∠AD{D_1}=\frac{π}{3}$,且A-BB1C1C体积为$\sqrt{3}$,求三棱柱ABC-A1B1C1的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用辗转相除法求240和288的最大公约数时,需要做2次除法;利用更相减损术求36和48的最大公约数时,需要进行3次减法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α是第二象限角,且3sinα+4cosα=0,则tan$\frac{α}{2}$=(  )
A.2B.$\frac{1}{2}$C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在($\sqrt{x}$-1)4•(x-1)2的展开式中,x项的系数为(  )
A.-4B.-2C.2D.4

查看答案和解析>>

同步练习册答案