精英家教网 > 高中数学 > 题目详情
14.(1)已知α,β都是锐角,cosα=$\frac{4}{5}$,cos(α+β)=-$\frac{5}{13}$,求cosβ的值.
(2)若cos($\frac{π}{4}$-α)=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),求cosα的值.

分析 (1)根据同角三角函数基本关系的应用分别求得sinα和sin(α+β)的值,进而根据余弦的两角和公式求得答案.
(2)由角的范围,利用同角三角函数基本关系式可求sin($\frac{π}{4}$-α),进而利用两角差的余弦函数公式即可计算求值得解.

解答 解:(1)∵α,β都是锐角,cosα=$\frac{4}{5}$,cos(α+β)=-$\frac{5}{13}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{3}{5}$,sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{12}{13}$,
∴cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=(-$\frac{5}{13}$)×$\frac{4}{5}$+$\frac{12}{13}$×$\frac{3}{5}$=$\frac{16}{65}$.
(2)∵α∈(0,$\frac{π}{4}$),cos($\frac{π}{4}$-α)=$\frac{4}{5}$,
∴$\frac{π}{4}$-α∈(0,$\frac{π}{4}$),sin($\frac{π}{4}$-α)=$\sqrt{1-co{s}^{2}(\frac{π}{4}-α)}$=$\frac{3}{5}$,
∴cosα=cos[($\frac{π}{4}$-α)-$\frac{π}{4}$]=cos($\frac{π}{4}$-α)cos$\frac{π}{4}$+sin($\frac{π}{4}$-α)sin$\frac{π}{4}$=$\frac{4}{5}×\frac{\sqrt{2}}{2}$+$\frac{3}{5}×\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$.

点评 本题主要考查了余弦函数的两角和与差公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,注重了对学生基础知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3-bx2+cx+b-a(a>0).
(1)设c=0.
①若a=b,曲线y=f(x)在x=x0处的切线过点(1,0),求x0的值;
②若a>b,求f(x)在区间[0,1]上的最大值.
(2)设f(x)在x=x1,x=x2两处取得极值,求证:f(x1)=x1,f(x2)=x2不同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.高三(1)班某一学习小组的A、B、C、D四位同学周五下午参加学校的课外活动,在课外活动时间中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在跑步.
①A不在散步,也不在打篮球;
②B不在跳舞,也不在跑步;
③“C在散步”是“A在跳舞”的充分条件;
④D不在打篮球,也不在跑步;
⑤C不在跳舞,也不在打篮球.
以上命题都是真命题,那么D在画画.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是某多面体的三视图,网格纸上小正方形的边长为1,则该多面体的体积为(  )
A.32B.$\frac{64}{3}$C.16D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{1}{{{3^x}-1}}+\frac{1}{2}$  求:
(1)f(x)的定义域;
(2)讨论f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z满足z(3i-4)=25(i是虚数单位),则z的共轭复数$\overline z$=(  )
A.4+3iB.4-3iC.-4+3iD.-4-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{lg({x}^{2}-1)}{\sqrt{{x}^{2}-x-2}}$的定义域为(  )
A.(-∞,-2)∪(1,+∞)B.(-2,1)C.(-∞,-1)∪(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(  )
A.1365石B.338石C.169石D.134石

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

同步练习册答案