精英家教网 > 高中数学 > 题目详情
5.高三(1)班某一学习小组的A、B、C、D四位同学周五下午参加学校的课外活动,在课外活动时间中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在跑步.
①A不在散步,也不在打篮球;
②B不在跳舞,也不在跑步;
③“C在散步”是“A在跳舞”的充分条件;
④D不在打篮球,也不在跑步;
⑤C不在跳舞,也不在打篮球.
以上命题都是真命题,那么D在画画.

分析 由③可知,C在散步,A在跳舞,由②④,可知,B在打篮球,D在画画,即可得出结论.

解答 解:由③可知,C在散步,A在跳舞,由②④,可知,B在打篮球,D在画画,
故答案为画画.

点评 本题考查合情推理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知数列{an}通项公式为an=$\frac{1}{n(n+1)}$,其前m项和为$\frac{9}{10}$,则双曲线$\frac{x^2}{m+1}-\frac{y^2}{m}$=1的渐近线方程是(  )
A.y=±$\frac{9}{10}$xB.y=±$\frac{10}{9}$xC.y=±$\frac{{3\sqrt{10}}}{10}$xD.y=±$\frac{{\sqrt{10}}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=x3-ax-1.
(1)当a=8时,求函数f(x)在x=0处的切线方程.
(2)讨论f(x)=x3-ax-1的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点F2的直线l与椭圆C相交于A、B两点,若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=2,点(an,an+1)在直线y=3x+2上,数列{bn}满足b1=2,$\frac{{b}_{n+1}}{{a}_{n+1}}$=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$
(1)求b2的值;
(2)求证数列{an+1}为等比数列,并求出数列{an}的通项公式;
(3)求证:2-$\frac{1}{2•{3}^{n-1}}$≤(1+$\frac{1}{{b}_{1}}$)(1+$\frac{1}{{b}_{2}}$)…(1+$\frac{1}{{b}_{n}}$)<$\frac{33}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x>0,y>0,则(x+$\frac{4}{y}$)2+$\frac{y}{x}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用与球心距离为1的平面去截球所得的截面面积为π,则球的表面积为(  )
A.B.C.D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知α,β都是锐角,cosα=$\frac{4}{5}$,cos(α+β)=-$\frac{5}{13}$,求cosβ的值.
(2)若cos($\frac{π}{4}$-α)=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2所示五棱锥P-ABFED,且AP=$\sqrt{30}$,
(1)求证:BD⊥平面POA;
(2)求二面角B-AP-O的正切值.

查看答案和解析>>

同步练习册答案