精英家教网 > 高中数学 > 题目详情
9.如图三棱柱ABC-A1B1C1,AB=BC=CA,D,D1分别是BC,B1C1的中点,四边形ADD1A1是菱形,且平面ADD1A1⊥平面CBB1C1
(Ⅰ)求证:四边形CBB1C1为矩形;
(Ⅱ)若$∠AD{D_1}=\frac{π}{3}$,且A-BB1C1C体积为$\sqrt{3}$,求三棱柱ABC-A1B1C1的侧面积.

分析 (Ⅰ)作AO⊥DD1,证明BC⊥平面ADD1A1,即可证明四边形CBB1C1为矩形;
(Ⅱ)若$∠AD{D_1}=\frac{π}{3}$,且A-BB1C1C体积为$\sqrt{3}$,求出三棱柱ABC-A1B1C1的直截面的周长,即可求三棱柱ABC-A1B1C1的侧面积.

解答 (Ⅰ)证明:作AO⊥DD1,则
∵平面ADD1A1⊥平面CBB1C1,平面ADD1A1∩平面CBB1C1=DD1,∴AO⊥平面CBB1C1
∴AO⊥BC,
∵AB=BC=CA,D是BC的中点,∴BC⊥AD,
∵AO∩AD=A,
∴BC⊥平面ADD1A1
∴BC⊥DD1,∴BC⊥CC1
∴四边形CBB1C1为矩形;
(Ⅱ)解:设AB=2a,则AO=$\frac{3}{2}$a,BB1=$\sqrt{3}$a,
∴A-BB1C1C体积=$\frac{1}{3}×2a×\sqrt{3}a×\frac{3}{2}a$=$\sqrt{3}$,∴a=1,
∴三棱柱ABC-A1B1C1的直截面的边长分别为2,$\sqrt{\frac{9}{4}+1}$,$\sqrt{\frac{9}{4}+1}$,
∴三棱柱ABC-A1B1C1的侧面积=(2+$\frac{\sqrt{13}}{2}$+$\frac{\sqrt{13}}{2}$)×2=4+2$\sqrt{13}$.

点评 本题考查线面垂直的判定与性质,考查三棱柱ABC-A1B1C1的侧面积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.复数z满足z(3i-4)=25(i是虚数单位),则z的共轭复数$\overline z$=(  )
A.4+3iB.4-3iC.-4+3iD.-4-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直角梯形ABCD绕底边AD所在直线EF旋转,在旋转前,非直角的腰的端点A可以在DE上选定.当点A选在射线DE上的不同位置时,形成的几何体大小、形状不同,分别画出它的三视图并比较其异同点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}{2^x}+1,x>3\\{4^x}-4,x≤3\end{array}$,若f(a)=f(2),且a≠2,则f(2a)=122.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,a,b,c是角A,B,C所对应边,且a,b,c成等比数列,则sinA($\frac{1}{tanA}$+$\frac{1}{tanB}$)的取值范围是($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{0}&{x=1}\\{|lg|x-1||}&{x≠1}\end{array}\right.$,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是(  )
A.b<0且c>0B.b>0且c<0C.b<0且c=0D.b>0且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若两个球的体积之比为1:8,则这两个球的表面积之比为(  )
A.1:2B.1:4C.1:8D.1:16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a=sin$\frac{2π}{7}$,b=cos$\frac{2π}{7}$,c=tan$\frac{2π}{7}$,则(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

同步练习册答案