分析 设a,b,c分别为a,aq,aq2.则有$\left\{\begin{array}{l}{a+aq>a{q}^{2}}\\{a+a{q}^{2}>aq}\\{aq+a{q}^{2}>a}\end{array}\right.$⇒$\left\{\begin{array}{l}{{q}^{2}+q-1>0…①}\\{{q}^{2}-q+1>0…②}\\{{q}^{2}+q-1>0…③}\end{array}\right.$⇒$\frac{\sqrt{5}-1}{2}<q<\frac{\sqrt{5}+1}{2}$.化简sinA($\frac{1}{tanA}$+$\frac{1}{tanB}$)=q即可
解答 解:∵△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,
∵a,b,c成等比数列,sin2B=sinAsinB
设a,b,c分别为a,aq,aq2.
则有$\left\{\begin{array}{l}{a+aq>a{q}^{2}}\\{a+a{q}^{2}>aq}\\{aq+a{q}^{2}>a}\end{array}\right.$⇒$\left\{\begin{array}{l}{{q}^{2}+q-1>0…①}\\{{q}^{2}-q+1>0…②}\\{{q}^{2}+q-1>0…③}\end{array}\right.$⇒$\frac{\sqrt{5}-1}{2}<q<\frac{\sqrt{5}+1}{2}$.
sinA($\frac{1}{tanA}+\frac{1}{tanB}$)=sinA($\frac{cosA}{sinA}+\frac{cosB}{sinB}$)=sinA$•\frac{sin(A+B)}{sinAsinB}$
=$\frac{sinAsinC}{sinAsinB}=\frac{si{n}^{2}B}{sinAsinB}=\frac{sinB}{sinA}=\frac{b}{a}=q$
∴sinA($\frac{1}{tanA}$+$\frac{1}{tanB}$)的取值范围是:($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$)
点评 本题主要考查同角三角函数的基本关系、等比中项,及三角形三边的数量关系,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | x-y-3=0 | B. | x+y+1=0 | C. | 2x+y=0 | D. | 2x-y-4=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2=8y | B. | x2=4y | C. | x2=2y | D. | x2=y |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8\sqrt{3}}{9}$ | B. | $\frac{16\sqrt{3}}{9}$ | C. | $\frac{32\sqrt{3}}{9}$ | D. | $\frac{64\sqrt{3}}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com