精英家教网 > 高中数学 > 题目详情
6.若复数z满足$\frac{\overline z}{1+i}=i$,其中i为虚数单位,则z=(  )
A.1-iB.1+iC.-1-iD.-1+i

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:$\frac{\overline z}{1+i}=i$,∴$\overline{z}$=i(1+i)=-1+i,则z=-1-i.
故选:C.

点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.三棱椎A-BCD的三视图为如图所示的三个直角三角形,则三棱锥A-BCD的表面积为(  )
A.2+2$\sqrt{5}$B.4+4$\sqrt{5}$C.$\frac{{4+4\sqrt{5}}}{3}$D.4+$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}{2^x}+1,x>3\\{4^x}-4,x≤3\end{array}$,若f(a)=f(2),且a≠2,则f(2a)=122.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,a,b,c是角A,B,C所对应边,且a,b,c成等比数列,则sinA($\frac{1}{tanA}$+$\frac{1}{tanB}$)的取值范围是($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{0}&{x=1}\\{|lg|x-1||}&{x≠1}\end{array}\right.$,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是(  )
A.b<0且c>0B.b>0且c<0C.b<0且c=0D.b>0且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系XOY中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+3cosα}\\{y=1+3sinα}\end{array}\right.$(α为参数),在以原点为极点,x轴正半轴为极坐标系中,直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$
(1)求C的普通方程和l的倾斜角;
(2)设点M(0,2),l与C交于A、B两点,且AB的中点为N,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若两个球的体积之比为1:8,则这两个球的表面积之比为(  )
A.1:2B.1:4C.1:8D.1:16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(2-a)(x-1)-2lnx,a∈R.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若不等式f(x)>0在区间(0,$\frac{1}{2}$)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx,g(x)=ex
(1)若函数y=ax+f(x)在区间(0,e]上的最大值为-4,求实数a的值;
(2)若函数y=ag(2x)+bg(x)-x有两个不同的零点x1,x2,x0是x1,x2的等差数列,证明:当a>0时,不等式2ag(2x0)+bg(x0)<f(e)成立.

查看答案和解析>>

同步练习册答案