精英家教网 > 高中数学 > 题目详情
16.三棱椎A-BCD的三视图为如图所示的三个直角三角形,则三棱锥A-BCD的表面积为(  )
A.2+2$\sqrt{5}$B.4+4$\sqrt{5}$C.$\frac{{4+4\sqrt{5}}}{3}$D.4+$\sqrt{6}$

分析 几何体为三棱锥,根据三视图判断几何体的结构特征,并结合直观图判断相关几何量的数据,把数据代入棱锥的表面积公式计算.

解答 解:由三视图知:几何体为三棱锥,如图:
其中SA⊥平面ABC,AB⊥BC,SA=BC=2,AB=1,AC=$\sqrt{5}$,SB=$\sqrt{5}$,
BC⊥平面SAB,SB?平面SAB,∴SB⊥BC,
∴几何体的表面积S=2×$\frac{1}{2}$×2×1+2×$\frac{1}{2}$×2×$\sqrt{5}$=2+2$\sqrt{5}$.
故选:A.

点评 本题考查了由三视图求几何体的表面积,根据三视图判断几何体的结构特征是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如果执行如图的程序框图,那么输出的i=8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设定义在区间[-k,k]上的函数f(x)=lg$\frac{1-mx}{1+x}$是奇函数,且f(-$\frac{1}{2}$)≠f($\frac{1}{2}$),若[x]表示不超过x的最大整数,x0是函数g(x)=lnx+2x+k-6的零点,则[x0]=(  )
A.1B.1或2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列1,1,2,3,5,8,x,21,34,55中,x等于13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2lnx-$\frac{1}{2}$ax2-bx-1.
(1)当a=b=1时,求函数f(x)的最大值;
(2)当b=1,a≥0时,求函数f(x)的单调区间;
(3)当a=0,b=-4时,方程2m=$\frac{f(x)}{{x}^{2}}$有唯一实数根,求正实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足不等式组$\left\{\begin{array}{l}x-3y+6≥0\\ 2x+y-4≤0\\ y+2≥0\end{array}\right.$则z=x+y的最小值为-14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a<0,函数$f(x)=acosx+\sqrt{1+sinx}+\sqrt{1-sinx}$,其中$x∈[{-\frac{π}{2}\;,\;\;\frac{π}{2}}]$.
(1)设$t=\sqrt{1+sinx}+\sqrt{1-sinx}$,求t的取值范围,并把f(x)表示为t的函数g(t);
(2)求函数f(x)的最大值(可以用a表示);
(3)设a=-1,若对区间$[{-\frac{π}{2}\;,\;\;\frac{π}{2}}]$内的任意x1,x2,若有|f(x1)-f(x2)|≤m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.准线方程为y=4的抛物线的标准方程是(  )
A.x2=16yB.x2=8yC.x2=-16yD.x2=-8y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足$\frac{\overline z}{1+i}=i$,其中i为虚数单位,则z=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

同步练习册答案