精英家教网 > 高中数学 > 题目详情
1.已知实数x,y满足不等式组$\left\{\begin{array}{l}x-3y+6≥0\\ 2x+y-4≤0\\ y+2≥0\end{array}\right.$则z=x+y的最小值为-14.

分析 作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+y对应的直线进行平移,可得当x=y=1时,z=2x+y取得最小值.

解答 解:作出不等式组$\left\{\begin{array}{l}x-3y+6≥0\\ 2x+y-4≤0\\ y+2≥0\end{array}\right.$表示的平面区域:

得到如图的阴影部分,由$\left\{\begin{array}{l}{y=-2}\\{2x+y=4}\end{array}\right.$,解得A(3,2),由$\left\{\begin{array}{l}{y=-2}\\{x-3y+6=0}\end{array}\right.$解得B(-12,-2)设z=F(x,y)=x+y,将直线l:z=x+y进行平移,
当l经过点B时,目标函数z达到最小值,
∴z最小值=F(-12,-2)=-14.
故答案为:-14.

点评 本题给出二元一次不等式组,求目标函数的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\left\{\begin{array}{l}3×{2^x}-24,0≤x≤10\\-{2^{x-5}}+126,10<x≤20\end{array}\right.$的零点不可能在下列哪个区间上(  )
A.(1,4)B.(3,7)C.(8,13)D.(11,18)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求满足下列条件的各圆的标准方程:
(1)圆心在直线5x-3y=8上,且与两坐标轴相切
(2)经过点A(-1,4)、B(3,2)且圆心在y轴上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设集合P={1,2,3,4},Q={x|x≤2},则P∩Q={1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.三棱椎A-BCD的三视图为如图所示的三个直角三角形,则三棱锥A-BCD的表面积为(  )
A.2+2$\sqrt{5}$B.4+4$\sqrt{5}$C.$\frac{{4+4\sqrt{5}}}{3}$D.4+$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知球的直径PC=4,A,B在球面上,∠CPA=∠CPB=45°,AB=2,则棱锥P-ABC的体积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的三个顶点A(0,2),B(0,4),C(1,3),其外接圆为圆M
(1)求圆M的方程;
(2)若直线l过点D($\frac{1}{2}$,2),且被圆M截得的弦长为$\sqrt{3}$,求直线l的方程;
(3)设点P为圆M上异于A,B的任意一点,直线PA交x轴于点E,直线PB交x轴于点F,问以EF为直径的圆N是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,短轴长为2$\sqrt{2}$,右焦点为F.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l过点M(3,t)且与椭圆C有且仅有一个公共点P,过点P作直线PF交椭圆于另一个点Q.
①证明:当直线OM与直线PQ的斜率kOM,kPQ均存在时,kOMkPQ为定值;
②求△PQM面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系XOY中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+3cosα}\\{y=1+3sinα}\end{array}\right.$(α为参数),在以原点为极点,x轴正半轴为极坐标系中,直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$
(1)求C的普通方程和l的倾斜角;
(2)设点M(0,2),l与C交于A、B两点,且AB的中点为N,求|MN|.

查看答案和解析>>

同步练习册答案