8£®ÒÑÖªa£¼0£¬º¯Êý$f£¨x£©=acosx+\sqrt{1+sinx}+\sqrt{1-sinx}$£¬ÆäÖÐ$x¡Ê[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$£®
£¨1£©Éè$t=\sqrt{1+sinx}+\sqrt{1-sinx}$£¬ÇótµÄȡֵ·¶Î§£¬²¢°Ñf£¨x£©±íʾΪtµÄº¯Êýg£¨t£©£»
£¨2£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ£¨¿ÉÒÔÓÃa±íʾ£©£»
£¨3£©Éèa=-1£¬Èô¶ÔÇø¼ä$[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$ÄÚµÄÈÎÒâx1£¬x2£¬ÈôÓÐ|f£¨x1£©-f£¨x2£©|¡Üm£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©t2=1+sinx+1-sinx+2$\sqrt{£¨1-sinx£©£¨1+sinx£©}=2+2\sqrt{co{s}^{2}x}$=2+2cosx£¬µÃcosx=$\frac{{t}^{2}-2}{2}$£¬
£¨2£©£¬g£¨t£©=$\frac{a}{2}{t}^{2}+t-a$£¬£¨t$¡Ê[\sqrt{2}£¬2]$£©£¬º¯Êý¶þ´Îg£¨t£©µÄ¶Ô³ÆÖáÊÇt=-$\frac{1}{a}$£¾0£¬·ÖÀàÌÖÂÛÆä×îÖµ£¬
£¨3£©¶ÔÇø¼ä$[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$ÄÚµÄÈÎÒâx1£¬x2£¬|f£¨x1£©-f£¨x2£©|¡Üm³ÉÁ¢£¬¼´£¨|f£¨x1£©-f£¨x2£©|£©max¡Ümºã³ÉÁ¢£®Çó³öf£¨x£©max£¬f£¨x£©min¼´¿É£¬

½â´ð ½â£º£¨1£©ÓÉ$t=\sqrt{1+sinx}+\sqrt{1-sinx}$£¬
µÃt2=1+sinx+1-sinx+2$\sqrt{£¨1-sinx£©£¨1+sinx£©}=2+2\sqrt{co{s}^{2}x}$=2+2cosx
¡ß$x¡Ê[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$¡àcosx¡Ê[0£¬1]£¬¹Êt¡Ê[$\sqrt{2}$£¬2]£¬
ÓÉÉϵÃcosx=$\frac{{t}^{2}-2}{2}$£¬f£¨x£©±íʾΪtµÄº¯Êýg£¨t£©£¬g£¨t£©=$\frac{a}{2}{t}^{2}+t-a$£¬£¨t$¡Ê[\sqrt{2}£¬2]$£©£»
£¨2£©ÓÉ£¨1£©µÃ£¬g£¨t£©=$\frac{a}{2}{t}^{2}+t-a$£¬£¨t$¡Ê[\sqrt{2}£¬2]$£©
¶þ´Îº¯Êýg£¨t£©µÄ¶Ô³ÆÖáÊÇt=-$\frac{1}{a}$£¾0£¬
¢Ùµ±-$\frac{1}{a}$£¾2£¬¼´-$\frac{1}{2}$£¼a£¼0ʱ£¬g£¨t£©mnx=g£¨2£©=a+2£»
¢Úµ±-$\frac{1}{a}£¼\sqrt{2}$£¬¼´a$£¼-\frac{\sqrt{2}}{2}$ʱ£¬g£¨t£©mnx=g£¨$\sqrt{2}$£©=$\sqrt{2}$£»
¢Ûµ±$\sqrt{2}$$¡Ü-\frac{1}{a}¡Ü2$£¬-$\frac{\sqrt{2}}{2}$¡Üa¡Ü-$\frac{1}{2}$ʱ£¬g£¨t£©mnx=g£¨-$\frac{1}{a}$£©=$-\frac{1}{2a}-a$
f£¨x£©mnx=$\left\{\begin{array}{l}{a+2£¬£¨-\frac{1}{2}£¼a£¼0£©}\\{-\frac{1}{2a}-a£¬£¨\frac{\sqrt{2}}{2}¡Üa¡Ü-\frac{1}{2}£©}\\{\sqrt{2}£¬£¨a£¼-\frac{\sqrt{2}}{2}£©}\end{array}\right.$
£¨3£©¶ÔÇø¼ä$[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$ÄÚµÄÈÎÒâx1£¬x2£¬|f£¨x1£©-f£¨x2£©|¡Üm³ÉÁ¢£¬
¼´£¨|f£¨x1£©-f£¨x2£©|£©max¡Ümºã³ÉÁ¢£®
a=-1ʱ£¬g£¨t£©=-$\frac{1}{2}{t}^{2}$+t+1£¬g£¨t£©mnx=g£¨1£©=$\frac{3}{2}$£¬g£¨t£©min=g£¨2£©=1
ÔÚÇø¼ä$[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$ÄÚf£¨x£©max=$\frac{3}{2}$£¬f£¨x£©min=1£¬
£¨|f£¨x1£©-f£¨x2£©|£©max=f£¨x£©max-f£¨x£©min=1£¬m¡Ý$\frac{1}{2}$
ʵÊýmµÄȡֵ·¶Î§£º[$\frac{1}{2}$£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄ»¯¼ò£¬»»Ôª·¨¡¢º¬²ÎÊý¶þ´Îº¯ÊýµÄ×îÖµ¡¢ºã³ÉÁ¢ÎÊÌâµÄ´¦Àí£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=$\frac{lnx}{x+1}$£®
£¨¢ñ£©ÇóÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©¶Ôº¯Êý¶¨ÒåÓòÄÚÿһ¸öʵÊýx£¬f£¨x£©+$\frac{t}{x}$¡Ý$\frac{2}{x+1}$ºã³ÉÁ¢£®
£¨1£©ÇótµÄ×îСֵ£»
£¨2£©Ö¤Ã÷²»µÈʽlnn£¾$\frac{1}{2}+\frac{1}{3}$+¡­+$\frac{1}{n}£¨n¡Ê{N^*}$ÇÒn¡Ý2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¸´ÊýzÂú×ãz£¨3i-4£©=25£¨iÊÇÐéÊýµ¥Î»£©£¬ÔòzµÄ¹²éÊý$\overline z$=£¨¡¡¡¡£©
A£®4+3iB£®4-3iC£®-4+3iD£®-4-3i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈýÀâ×µA-BCDµÄÈýÊÓͼΪÈçͼËùʾµÄÈý¸öÖ±½ÇÈý½ÇÐΣ¬ÔòÈýÀâ×¶A-BCDµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®2+2$\sqrt{5}$B£®4+4$\sqrt{5}$C£®$\frac{{4+4\sqrt{5}}}{3}$D£®4+$\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÎÒ¹ú¹Å´úÊýѧÃûÖø¡¶¾ÅÕÂËãÊõ¡·ÓС°Ã×¹ÈÁ£·Ö¡±Ì⣺Á¸²Ö¿ª²ÖÊÕÁ¸£¬ÓÐÈËËÍÀ´Ã×1534ʯ£¬ÑéµÃÃ×Äڼйȣ¬³éÑùÈ¡Ã×Ò»°Ñ£¬ÊýµÃ254Á£ÄڼйÈ28Á££¬ÔòÕâÅúÃ×ÄڼйÈԼΪ£¨¡¡¡¡£©
A£®1365ʯB£®338ʯC£®169ʯD£®134ʯ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª¡÷ABCµÄÈý¸ö¶¥µãA£¨0£¬2£©£¬B£¨0£¬4£©£¬C£¨1£¬3£©£¬ÆäÍâ½ÓԲΪԲM
£¨1£©ÇóÔ²MµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl¹ýµãD£¨$\frac{1}{2}$£¬2£©£¬ÇÒ±»Ô²M½ØµÃµÄÏÒ³¤Îª$\sqrt{3}$£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©ÉèµãPΪԲMÉÏÒìÓÚA£¬BµÄÈÎÒâÒ»µã£¬Ö±ÏßPA½»xÖáÓÚµãE£¬Ö±ÏßPB½»xÖáÓÚµãF£¬ÎÊÒÔEFΪֱ¾¶µÄÔ²NÊÇ·ñ¹ý¶¨µã£¿Èô¹ý¶¨µã£¬Çó³ö¶¨µã×ø±ê£»Èô²»¹ý¶¨µã£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬Ö±½ÇÌÝÐÎABCDÈÆµ×±ßADËùÔÚÖ±ÏßEFÐýת£¬ÔÚÐýתǰ£¬·ÇÖ±½ÇµÄÑüµÄ¶ËµãA¿ÉÒÔÔÚDEÉÏÑ¡¶¨£®µ±µãAÑ¡ÔÚÉäÏßDEÉϵIJ»Í¬Î»ÖÃʱ£¬Ðγɵļ¸ºÎÌå´óС¡¢ÐÎ×´²»Í¬£¬·Ö±ð»­³öËüµÄÈýÊÓͼ²¢±È½ÏÆäÒìͬµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{2^x}+1£¬x£¾3\\{4^x}-4£¬x¡Ü3\end{array}$£¬Èôf£¨a£©=f£¨2£©£¬ÇÒa¡Ù2£¬Ôòf£¨2a£©=122£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈôÁ½¸öÇòµÄÌå»ýÖ®±ÈΪ1£º8£¬ÔòÕâÁ½¸öÇòµÄ±íÃæ»ýÖ®±ÈΪ£¨¡¡¡¡£©
A£®1£º2B£®1£º4C£®1£º8D£®1£º16

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸