·ÖÎö £¨1£©t2=1+sinx+1-sinx+2$\sqrt{£¨1-sinx£©£¨1+sinx£©}=2+2\sqrt{co{s}^{2}x}$=2+2cosx£¬µÃcosx=$\frac{{t}^{2}-2}{2}$£¬
£¨2£©£¬g£¨t£©=$\frac{a}{2}{t}^{2}+t-a$£¬£¨t$¡Ê[\sqrt{2}£¬2]$£©£¬º¯Êý¶þ´Îg£¨t£©µÄ¶Ô³ÆÖáÊÇt=-$\frac{1}{a}$£¾0£¬·ÖÀàÌÖÂÛÆä×îÖµ£¬
£¨3£©¶ÔÇø¼ä$[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$ÄÚµÄÈÎÒâx1£¬x2£¬|f£¨x1£©-f£¨x2£©|¡Üm³ÉÁ¢£¬¼´£¨|f£¨x1£©-f£¨x2£©|£©max¡Ümºã³ÉÁ¢£®Çó³öf£¨x£©max£¬f£¨x£©min¼´¿É£¬
½â´ð ½â£º£¨1£©ÓÉ$t=\sqrt{1+sinx}+\sqrt{1-sinx}$£¬
µÃt2=1+sinx+1-sinx+2$\sqrt{£¨1-sinx£©£¨1+sinx£©}=2+2\sqrt{co{s}^{2}x}$=2+2cosx
¡ß$x¡Ê[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$¡àcosx¡Ê[0£¬1]£¬¹Êt¡Ê[$\sqrt{2}$£¬2]£¬
ÓÉÉϵÃcosx=$\frac{{t}^{2}-2}{2}$£¬f£¨x£©±íʾΪtµÄº¯Êýg£¨t£©£¬g£¨t£©=$\frac{a}{2}{t}^{2}+t-a$£¬£¨t$¡Ê[\sqrt{2}£¬2]$£©£»
£¨2£©ÓÉ£¨1£©µÃ£¬g£¨t£©=$\frac{a}{2}{t}^{2}+t-a$£¬£¨t$¡Ê[\sqrt{2}£¬2]$£©
¶þ´Îº¯Êýg£¨t£©µÄ¶Ô³ÆÖáÊÇt=-$\frac{1}{a}$£¾0£¬
¢Ùµ±-$\frac{1}{a}$£¾2£¬¼´-$\frac{1}{2}$£¼a£¼0ʱ£¬g£¨t£©mnx=g£¨2£©=a+2£»
¢Úµ±-$\frac{1}{a}£¼\sqrt{2}$£¬¼´a$£¼-\frac{\sqrt{2}}{2}$ʱ£¬g£¨t£©mnx=g£¨$\sqrt{2}$£©=$\sqrt{2}$£»
¢Ûµ±$\sqrt{2}$$¡Ü-\frac{1}{a}¡Ü2$£¬-$\frac{\sqrt{2}}{2}$¡Üa¡Ü-$\frac{1}{2}$ʱ£¬g£¨t£©mnx=g£¨-$\frac{1}{a}$£©=$-\frac{1}{2a}-a$
f£¨x£©mnx=$\left\{\begin{array}{l}{a+2£¬£¨-\frac{1}{2}£¼a£¼0£©}\\{-\frac{1}{2a}-a£¬£¨\frac{\sqrt{2}}{2}¡Üa¡Ü-\frac{1}{2}£©}\\{\sqrt{2}£¬£¨a£¼-\frac{\sqrt{2}}{2}£©}\end{array}\right.$
£¨3£©¶ÔÇø¼ä$[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$ÄÚµÄÈÎÒâx1£¬x2£¬|f£¨x1£©-f£¨x2£©|¡Üm³ÉÁ¢£¬
¼´£¨|f£¨x1£©-f£¨x2£©|£©max¡Ümºã³ÉÁ¢£®
a=-1ʱ£¬g£¨t£©=-$\frac{1}{2}{t}^{2}$+t+1£¬g£¨t£©mnx=g£¨1£©=$\frac{3}{2}$£¬g£¨t£©min=g£¨2£©=1
ÔÚÇø¼ä$[{-\frac{¦Ð}{2}\;£¬\;\;\frac{¦Ð}{2}}]$ÄÚf£¨x£©max=$\frac{3}{2}$£¬f£¨x£©min=1£¬
£¨|f£¨x1£©-f£¨x2£©|£©max=f£¨x£©max-f£¨x£©min=1£¬m¡Ý$\frac{1}{2}$
ʵÊýmµÄȡֵ·¶Î§£º[$\frac{1}{2}$£¬+¡Þ£©£®
µãÆÀ ±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄ»¯¼ò£¬»»Ôª·¨¡¢º¬²ÎÊý¶þ´Îº¯ÊýµÄ×îÖµ¡¢ºã³ÉÁ¢ÎÊÌâµÄ´¦Àí£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4+3i | B£® | 4-3i | C£® | -4+3i | D£® | -4-3i |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2+2$\sqrt{5}$ | B£® | 4+4$\sqrt{5}$ | C£® | $\frac{{4+4\sqrt{5}}}{3}$ | D£® | 4+$\sqrt{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1365ʯ | B£® | 338ʯ | C£® | 169ʯ | D£® | 134ʯ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1£º2 | B£® | 1£º4 | C£® | 1£º8 | D£® | 1£º16 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com