| A. | x2=8y | B. | x2=4y | C. | x2=2y | D. | x2=y |
分析 将直线方程代入抛物线方程,求得交点坐标,利用两点之间的距离公式,即可求得p的值,求得抛物线方程.
解答 解:由$\left\{\begin{array}{l}{{x}^{2}=2py}\\{y=2x}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=4p}\\{y=8p}\end{array}\right.$,则交点坐标为(0,0),(4p,8p),
则$\sqrt{(4p)^{2}+(8p)^{2}}$=4$\sqrt{5}$,
解得:p=±1,由p>0,
则p=1,
则抛物线C的方程x2=2y,
故选C.
点评 本题考查直线与抛物线的位置关系,考查两点之间的距离公式,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | -$\frac{4}{3}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com