精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且,M是PB的中点.
(1)求AC与PB所成的角的余弦值;
(2)求二面角P-AC-M的余弦值;
(3)在棱PC上是否存在点N,使DN∥平面AMC,若存在,确定点N位置;若不存在,说明理由.

【答案】分析:方法一:(1)以A为坐标原点,AD,AB,AP方向为X,Y,Z轴正方向建立空间坐标系,分别求出直线AC与PB的言论自由向量,代入向量夹角公式,即可求出AC与PB所成的角的余弦值;
(2)分别求出平面PAD与平面ACM的方向向量,代入向量夹角公式,即可求出二面角P-AC-M的余弦值;
(3)设,根据DN∥平面AMC,则直线DN的方向向量与平面AMC的法向量垂直,数量积为0,我们可以构造出关于λ的方程,解方程求出λ的值,即可确定N点位置.
方法二:(1)过B作BE∥PA,且BE=PA,连接CE、AE,则∠CAE即为AC与PB所成的角,解三角形CAE,即可求出AC与PB所成的角的余弦值;
(2)取PC中点N连MN,则MN∥BC,进而MN⊥平面PAC.取AC中点H,连NH,MH,可证得∠MHN即为二面角P-AC-M的平面角.解三角形MHN,即可求出二面角P-AC-M的余弦值;
(3)连DB交AC于点F,取PM中点G,连DG、FM,则DG∥FM,由三角形中位定理,可得DG∥FM,由线面平行的判定定理可得DG∥平面AMC,连DN,同理可证GN∥平面AMC,由面面平行的判定定理可得:平面DGN∥平面AMC,再由面面平行的性质定理即可得到DN∥平面AMC.
解答:解:[方法一]
(1)如图建立空间直角坐标系,
则A(0,0,0),C(1,1,0),P(0,0,1),B(0,2,0),M(0,1,),

.(4分)
(2)设平面AMC的一个法向量为,∵

令x=1,则y=-1,z=2,


是平面PAC的一个法向量,

∴二面角P-AC-M的余弦值为.(8分)
(3)存在,N为PC中点.


依题意
,∴,即N为PC中点.(12分)
[方法二](1)如图,过B作BE∥PA,且BE=PA,
连接CE、AE,则∠CAE即为AC与PB所成的角,
由已知可得
.(4分)
(2)取PC中点N连MN,则MN∥BC,
∴MN⊥平面PAC.
取AC中点H,连NH,MH,
则NH⊥AC,MH⊥AC,∴∠MHN即为二面角P-AC-M的平面角.
,∴
.(8分)
(3)存在,PC中点N即为所求.
连DB交AC于点F,


取PM中点G,连DG、FM,则DG∥FM,
又DG?平面AMC,FM?平面AMC,
∴DG∥平面AMC,
连DN,则GN∥MC,同理可证GN∥平面AMC,又GN∩DG=D,
∴平面DGN∥平面AMC,
∴DN∥平面AMC.(12分)
点评:本题考查的知识点是二面角的平面角及求法,异面直线及其所成的角及直线与平面平行的判定,方法一(向量法)是关键是建立适当的空间坐标系,将空间直线与平面间的位置关系及夹角问题转化为向量的夹角问题,方法二(几何法)的关键是熟练掌握空间中直线与平面平行及垂直的定义、判定、性质及几何特征,建立良好的空间想像能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案