精英家教网 > 高中数学 > 题目详情

交于A、B两点,且,则直线AB的方程为:                                (  )

A、                                                     B、

C、                                                     D、

C


解析:

解此题具有很大的迷惑性,注意题目隐含直线AB的方程就是,它过定点(0,2),只有C项满足。故选C。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准线的距离是(  )
A、
25
4
B、
25
2
C、
25
8
D、25

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区二模)已知椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
3
,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M交于A,B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C1:y2=4mx(m>0)的准线与x轴交于点F1,焦点为F2;椭圆C2以F1、F2为焦点,离心率e=
12

(I)(文科做)当m=1时,
①求椭圆C2的标准方程;
②若直线l与抛物线交于A、B两点,且线段AB恰好被点P(3,2)平分,设直线l与椭圆C2交于M、N两点,求线段MN的长;
(II)(仅理科做)设抛物线C1与椭圆C2的一个交点为Q,是否存在实数m,,使得△QF1F2的边长是连续的自然数?若存在,求出这样的实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)已知点F1(-
3
,0)
和F2(
3
,0)
是椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,且椭圆M经过点(
3
1
2
)

(1)求椭圆M的方程;
(2)过点P(0,2)的直线l和椭圆M交于A、B两点,且
PB
=
3
5
PA
,求直线l的方程;
(3)过点P(0,2)的直线和椭圆M交于A、B两点,点A关于y轴的对称点C,求证:直线CB必过y轴上的定点,并求出此定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•大连二模)斜率为k(k>0)的直线l过定点P(0,m)(m>0),与抛物线x2=2py(p>0)交于A,B两点,且A,B两点到y轴距离之差为4k.
(Ⅰ)求抛物线方程;
(Ⅱ)若此抛物线焦点为F,且有|AF|+|BF|=4k2+4,试求m的值;
(Ⅲ)过抛物线准线上任意一点Q作抛物线的两条切线,切点分别为M,N,试探究直线MN是否过定点,若过定点,求出定点的坐标.

查看答案和解析>>

同步练习册答案