精英家教网 > 高中数学 > 题目详情
已知a>0,且a≠1,设P:函数y=logax在区间(0,+∞)内单调递减;Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.
(1)求Q正确时,a的取值范围;
(2)求P与Q有且只有一个正确的充要条件.
分析:(1)由二次函数的判别式求出命题q成立时a的取值范围
先由对数函数的单调性求出命题p成立时a的取值范围,再求出p真q假和p假q真时a的取值范围,最后取并集即可.
解答:解:(1)Q正确?
a>0,且a≠1
△=(2a-3)2-4>0
?a>
5
2
0<a<
1
2

(2)P正确?0<a<1,
∴P正确,且Q不正确?
0<a<1
1
2
≤a≤
5
2
?
1
2
≤a<1
;(5分)
P不正确,且Q正确?
a≥1
a>
5
2
或a<
1
2
?a>
5
2
.(6分)
P与Q有且只有一个正确的充要条件是
1
2
≤a<1
a>
5
2
.(8分)
点评:本题考查了对数函数的单调性、二次函数根的判定及否命题的知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,且a≠1,数学公式
(1)求f(x)的表达式,并判断其单调性;
(2 )当f(x)的定义域为(-1,1)时,解关于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒为负值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省杭州市学军中学高一(上)期中数学试卷(解析版) 题型:解答题

已知a>0,且a≠1,
(1)求f(x)的表达式,并判断其单调性;
(2 )当f(x)的定义域为(-1,1)时,解关于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒为负值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年山东省聊城一中高三模块测试数学试卷(理科)(解析版) 题型:解答题

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省中山一中、深圳市宝安中学高三第二次联考数学试卷(文科)(解析版) 题型:解答题

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

同步练习册答案