精英家教网 > 高中数学 > 题目详情
20.设OADB是平行四边形,其对角线相交于C点,$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,
试求向量$\overrightarrow{MN}$与向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的关系.

分析 根据题意,把向量$\overrightarrow{MN}$用向量$\overrightarrow{OA}$、$\overrightarrow{OB}$来表示,可先表示出$\overrightarrow{BM}$、$\overrightarrow{MC}$以及$\overrightarrow{CN}$,再表示出$\overrightarrow{MN}$.

解答 解:∵$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{BC}$=$\overrightarrow{CA}$,
∴$\overrightarrow{BM}$=$\frac{1}{6}$$\overrightarrow{BA}$=$\frac{1}{6}$($\overrightarrow{OA}$-$\overrightarrow{OB}$),
∴$\overrightarrow{MC}$=2$\overrightarrow{BM}$=$\frac{1}{3}$($\overrightarrow{OA}$-$\overrightarrow{0B}$);
又∵$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,$\overrightarrow{CD}$=$\overrightarrow{OC}$,
∴$\overrightarrow{CN}$=$\frac{1}{6}$($\overrightarrow{OA}$+$\overrightarrow{OB}$);
∴$\overrightarrow{MN}$=$\overrightarrow{MC}$+$\overrightarrow{CN}$
=$\frac{1}{3}$($\overrightarrow{OA}$-$\overrightarrow{OB}$)+$\frac{1}{6}$($\overrightarrow{OA}$+$\overrightarrow{OB}$)
=$\frac{1}{2}$$\overrightarrow{OA}$-$\frac{1}{6}$$\overrightarrow{OB}$.

点评 本题考查了向量的线性运算的应用问题,也考查了数形结合的数学思想,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和.如:1=$\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$,1=$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}$,1=$\frac{1}{2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}$,
依此类推可得:1=$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{13}+\frac{1}{n}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}$,其中n∈N*.设1≤x≤13,1≤y≤n,则$\frac{x+y+2}{x+1}$的最小值为(  )
A.$\frac{23}{2}$B.$\frac{8}{7}$C.$\frac{5}{2}$D.$\frac{34}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,将平面直角坐标系中的纵轴绕原点O顺时针旋转30°后,构成一个斜坐标平面xOy.在此斜坐标平面xOy中,点P(x,y)的坐标定义如下:过点P作两坐标轴的平行线,分别交两轴于M、N两点,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.那么以原点O为圆心的单位圆在此斜坐标系下的方程为(  )
A.x2+y2+xy-1=0B.x2+y2+xy+1=0C.x2+y2-xy-1=0D.x2+y2-xy+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,∠A、B、C对边分别为a、b、c,A=60°,b=1,这个三角形的面积为$\sqrt{3}$,则a=(  )
A.2B.$\sqrt{10}$C.2$\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,已知a=2,b=$\sqrt{3}$,c=3,则cosC=(  )
A.$\frac{5}{6}$B.$\frac{1}{6}$C.$\frac{\sqrt{3}}{9}$D.-$\frac{\sqrt{3}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.当n∈N*时,定义函数N(n)表示n的最大奇因数,如N(1)=1,N(2)=1,N(3)=3,记S(n)=N(2n-1)+N(2n-1+1)+N(2n-1+2)+…+N(2n-1)(n∈N*),则:
(1)S(3)=16;
(2)S(n)=4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三个中至少有一人达标的概率为(  )
A.0.015B.0.005C.0.985D.0.995

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向ADC折叠,AB折过去后交DC于P,设AB=x,则△ADP的最大面积为108-72$\sqrt{2}$;相应的x=6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2012)+f(2013)+f(2014)的值为4.

查看答案和解析>>

同步练习册答案