精英家教网 > 高中数学 > 题目详情
8.在△ABC中,∠A、B、C对边分别为a、b、c,A=60°,b=1,这个三角形的面积为$\sqrt{3}$,则a=(  )
A.2B.$\sqrt{10}$C.2$\sqrt{3}$D.$\sqrt{13}$

分析 在△ABC中,由,∠A=60°,b=1,其面积为$\sqrt{3}$,可求得c,利用余弦定理a2=b2+c2-2b•c•cosA可以求得a.

解答 解:在△ABC中,∵∠A=60°,b=1,S△ABC=$\frac{1}{2}b•c•sinA$=$\frac{1}{2}×1×c×sin60°=\sqrt{3}$,
∴c=4,
∴由余弦定理得:a2=b2+c2-2b•c•cosA=17-2×4×1×$\frac{1}{2}$=13,
解得a=$\sqrt{13}$;
故选:D

点评 本题考查正弦定理的应用,重点考查正弦定理及余弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有42种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.一球内切于棱长为2的正方体,则该球的体积为$\frac{4}{3}π$该球表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F且与该抛物线交于A、B两点.其中点A在x轴上方.若直线l的倾斜角为60°.则△OAB的面积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,∠A、B、C对边分别为a、b、c,A=60°,b=1,这个三角形的面积为$\sqrt{3}$,则△ABC外接圆的直径是(  )
A.$\sqrt{39}$B.$\frac{\sqrt{39}}{3}$C.$\frac{\sqrt{39}}{6}$D.$\frac{2\sqrt{39}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知sin(α+β)cosβ-cos(α+β)sinβ=$\frac{3}{5}$,且α在第二象限,则tan$\frac{α}{2}$(  )
A.$\frac{1}{3}$或-3B.3C.$\frac{1}{3}$D.3或-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设OADB是平行四边形,其对角线相交于C点,$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,
试求向量$\overrightarrow{MN}$与向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图甲,水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图乙是一个正方体的表面展开图,若图中“抗”在正方体的上面,则这个正方体的下面是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),曲线C的极坐标方程是ρ=$\frac{sinθ}{1-si{n}^{2}θ}$,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(1,2),直线l与曲线C交于A、B两点.
(1)写出直线l的极坐标方程与曲线C的普通方程;
(2)线段MA,MB长度分别记为|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

同步练习册答案