精英家教网 > 高中数学 > 题目详情
19.一球内切于棱长为2的正方体,则该球的体积为$\frac{4}{3}π$该球表面积为4π.

分析 因为球内切与正方体,所以求导直径与正方体的棱长相等,得到球的半径,利用公式求体积和表面积.

解答 解:因为球内切于棱长为2的正方体,所以球的直径等于正方体的棱长,所以球的半径为1,
所以该球的体积为$\frac{4π}{3}$,该球表面积为4π;
故答案为:$\frac{4}{3}π$;4π.

点评 本题考查了正方体的内切球的体积、表面积求法;关键是明确球的直径与正方体的棱长相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图所示,墙上挂有边长为a的正方形木板,它的四个角的阴影部分都是以正方形的顶点为圆心,半径为$\frac{a}{2}$的圆弧.某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都相等,此人投镖4000次,镖击中空白部分的次数是854次.据此估算:圆周率π约为3.146.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和.如:1=$\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$,1=$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}$,1=$\frac{1}{2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}$,
依此类推可得:1=$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{13}+\frac{1}{n}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}$,其中n∈N*.设1≤x≤13,1≤y≤n,则$\frac{x+y+2}{x+1}$的最小值为(  )
A.$\frac{23}{2}$B.$\frac{8}{7}$C.$\frac{5}{2}$D.$\frac{34}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}-1}\end{array}\right.$(t为参数),点M(0,-1),以原点为极点,x轴非负半轴为极轴,直线l:2ρcos(θ+$\frac{π}{6}$)+1=0,若直线l与曲线C相交于A,B两点,与y轴交于N点,则|S△MAN-S△MBN|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如皋市某电子厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,正品率P与日产量x(件)之间大体满足关系:$\begin{array}{l}P=\left\{\begin{array}{l}1-\frac{1}{96-x}(1≤x≤c,x∈N,1≤c<96)\\ \frac{1}{3}(x>c,x∈N)\end{array}\right.\end{array}$
(注:正品率$P=\frac{合格品数}{生产量}$,如P=0.9表示每生产10件产品,约有9件为合格品,其余为次品.)已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损$\frac{A}{2}$元,故厂方希望定出合适的日产量,
(1)试将生产这种仪器每天的盈利额T(元)表示为日产量x(件)的函数;
(2)当日产量x为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱柱ABCD-A1B1C1D1的三视图如图所示.
(1)画出此四棱柱的直观图,并求出四棱柱的体积;
(2)若E为AA1上一点,EB∥平面A1CD,试确定E点位置,并证明EB⊥平面AB1C1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,将平面直角坐标系中的纵轴绕原点O顺时针旋转30°后,构成一个斜坐标平面xOy.在此斜坐标平面xOy中,点P(x,y)的坐标定义如下:过点P作两坐标轴的平行线,分别交两轴于M、N两点,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.那么以原点O为圆心的单位圆在此斜坐标系下的方程为(  )
A.x2+y2+xy-1=0B.x2+y2+xy+1=0C.x2+y2-xy-1=0D.x2+y2-xy+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,∠A、B、C对边分别为a、b、c,A=60°,b=1,这个三角形的面积为$\sqrt{3}$,则a=(  )
A.2B.$\sqrt{10}$C.2$\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向ADC折叠,AB折过去后交DC于P,设AB=x,则△ADP的最大面积为108-72$\sqrt{2}$;相应的x=6$\sqrt{2}$.

查看答案和解析>>

同步练习册答案