分析 先求出击中空白部分的概率对应的平面区域的面积,再根据几何概型概率公式易求解.
解答 解:利用几何概型求解,
图中空白部分的面积为:a2-π×($\frac{{a}^{2}}{2}$)2=(1-$\frac{π}{4}$)a2,
则他击中空白部分的概率是1-$\frac{π}{4}$,
∵投镖4000次,镖击中空白部分的次数是854次,
∴1-$\frac{π}{4}$=$\frac{854}{4000}$
∴π≈3.146.
故答案为:3.146.
点评 本题主要考查了几何图形的面积、几何概型.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| X1 | X2 | 总计 | |
| Y1 | a | b | a+b |
| Y2 | c | d | c+d |
| 总计 | a+c | b+d | a+b+c+d |
| A. | $\frac{a}{a+b}$与$\frac{c}{c+d}$ | B. | $\frac{a}{c+d}$与$\frac{c}{a+b}$ | C. | $\frac{a}{a+d}$与$\frac{c}{b+c}$ | D. | $\frac{a}{b+d}$与$\frac{c}{a+c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com