精英家教网 > 高中数学 > 题目详情
函数的单调递增区间是             .
(1,+)

试题分析:先求出函数的定义域,求出函数f(x)的导函数,在定义域下令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间。根据题意,由于函数(x>0),可知当x<1时,则导数小于零,函数递减,当x>1时函数递增,故单调递增区间为(1,+)。
点评:求函数的单调区间,应该先求出函数的导函数,令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知的一个极值点.
(Ⅰ) 求的值;  
(Ⅱ) 求函数的单调递减区间;
(Ⅲ)设,试问过点可作多少条直线与曲线相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
(1)求a,b的值;
(2)讨论函数f(x)的单调性。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知处取得极值
(1)求
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数,对任意,不等式恒成立,则正数的取值范围是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,,其中R .
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数, 当时,若存在,对于任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,求的单调区间;
(Ⅱ)设函数在点处的切线为,直线轴相交于点.若点的纵坐标恒小于1,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(a为实常数).
(1)若,求证:函数在(1,+.∞)上是增函数;
(2)求函数在[1,e]上的最小值及相应的值;
(3)若存在,使得成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案