分析 (I)由an+1+2an-1=3an(n≥2),变形为an+1-an=2(an-an-1),a2-a1=2,利用等比数列的定义即可证明.
(II)由(I)可得:an+1-an=2n,利用“累加求和”方法、等比数列的求和公式即可得出.
(III)bn=an-1=2n-1,可得$\frac{{a}_{n}}{{b}_{n}{b}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$.利用“裂项求和”方法可得Sn,再利用数列的单调性、不等式的解法即可得出.
解答 (I)证明:∵an+1+2an-1=3an(n≥2),∴an+1-an=2(an-an-1),a2-a1=2,
∴数列{an+1-an}是等比数列,首项为2,公比为2.
(II)解:由(I)可得:an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+2
=$\frac{{2}^{n}-1}{2-1}$+1=2n.
(III)解:bn=an-1=2n-1,
∴$\frac{{a}_{n}}{{b}_{n}{b}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$.
∴Sn=$\frac{{a}_{1}}{{b}_{1}{b}_{2}}$+$\frac{{a}_{2}}{{b}_{2}{b}_{3}}$+…+$\frac{{a}_{n}}{{b}_{n}{b}_{n+1}}$=$(1-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1})$=1-$\frac{1}{{2}^{n+1}-1}$,
若?n∈N*,使Sn≥4m2-3m成立,
∴1>4m2-3m,解得:$-\frac{1}{4}$<m<1.
∴实数m的取值范围是$(-\frac{1}{4},1)$.
点评 本题考查了递推关系、等比数列的定义及其通项公式、“裂项求和”方法、“累加求和”方法、数列的单调性、不等式的解法,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com