精英家教网 > 高中数学 > 题目详情

如图,P-AD-C是直二面角,四边形ABCD是∠BAD=120°的菱形,AB=2,PA⊥AD,E是CD的中点,设PC与平面ABCD所成的角为45°.

(1)求证:平面PAE⊥平面PCD;

(2)试问在线段AB(不包括端点)上是否存在一点F,使得二面角A-PE-D的大小为45°?若存在,请求出AF的长,若不存在,请说明理由.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江西)椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,a+b=3.
(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P-AD-C是直二面角,四边形ABCD是∠BAD=120°的菱形,AB=2,PA⊥AD,E是CD的中点,设PC与平面ABCD所成的角为45°.
(1)求证:平面PAE⊥平面PCD;
(2)试问在线段AB(不包括端点)上是否存在一点F,使得二面角A-PE-D的大小为450?若存在,请求出AF的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省武汉市高三第5次月考数学理卷 题型:解答题

(本小题满分13分)

如图,已知四棱锥PABCD的底面是菱形,∠BCD=60°,点EBC边的中点,ACDE交于点OPO⊥平面ABCD.

(Ⅰ)求证:PDBC

(Ⅱ)若AB=6,PC=6,求二面角PADC的大小;

(Ⅲ)在(Ⅱ)的条件下,求异面直线PBDE所成角的余弦值.

 

查看答案和解析>>

同步练习册答案