精英家教网 > 高中数学 > 题目详情
(2011•聊城一模)已知点F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,P是椭圆C上的一点,且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面积为
3
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)点M的坐标为(
5
4
,0)
,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的k∈R,
MA
MB
是否为定值?若是求出这个定值;若不是说明理由.
分析:(Ⅰ)设|PF1|=m,|PF2|=n,在△PF1F2中,由余弦定理以及三角形的面积,结合椭圆定义,求出a,c,b可得椭圆的方程.
(Ⅱ)利用直线与椭圆方程,通过韦达定理,结合向量的数量积化简得到定值即可.
解答:解:(Ⅰ)设|PF1|=m,|PF2|=n,在三角形PF1F2中,由余弦定理得4=m2+n2-2mncos
π
3
,由三角形的面积为
3
3

所以
1
2
mnsin
π
3
=
3
3
,所以mn=
4
3
,所以m+n=2
2
,所以a=
2
;又c=1,所以b=1,椭圆C的方程为
x2
2
y2 =1

(Ⅱ)由F2(1,0),直线l的方程为y=k(x-1).由
y=k(x-1)
x2
2
+y2 =1
消去y,(2k2+1)x2-4k2x+2(k2-1)=0
设A(x1,y1),B(x2,y2)则x1+x2=
4k2
2k2+1
,x1x2=
2(k2-1)
2k2+1

MA
MB
=(x1-
5
4
,y1)(x2-
5
4
,y2)=(x1-
5
4
)(x2-
5
4
)+y1y2
=(x1-
5
4
)(x2-
5
4
)+k2(x1-1)(x2-1)
=(k2+1)
2k2-2
2k2+1
-
4k2(k2+
5
4
)
2k2+1
+
25
16
+k2
=
-4 k2-2
2k2+1
+
25
16
=-
7
16
由此可知
MA
MB
=-
7
16
为定值.
点评:本题是中档题,考查椭圆方程的求法,直线与椭圆的位置关系,注意余弦定理、面积公式椭圆的定义以及向量数量积的综合应用,考查计算能力,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•聊城一模)在2010年上海世博会期间,小红计划对事先选定的10个场馆进行参观,在她选定的10个场馆中,有4个场馆分布在A片区,3个场馆分布在B片区,3个场馆分布在C片区.由于参观的人很多,在进入每个场馆前都需要排队等候,已知A片区的每个场馆的排队时间为2小时,B片区和C片区的每个场馆的排队时间都为1小时.参观前小红突然接到公司通知,要求她一天后务必返回,于是小红决定从这10个场馆中随机选定3个场馆进行参观.
(Ⅰ)求小红每个片区都参观1个场馆的概率;
(Ⅱ)设小红排队时间总和为ξ(小时),求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•聊城一模)已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}是等差数列,且b1=3,b10-b4=6
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
bnan
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•聊城一模)函数f(x)=4cosx-ex2的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•聊城一模)执行如图所示的程序框图后,若输出的结果为16,则判断框内应填(  )

查看答案和解析>>

同步练习册答案