精英家教网 > 高中数学 > 题目详情
设椭圆的左焦点为,直线轴交于点,过点且倾斜角为30°的直线交椭圆于两点.
(Ⅰ)求直线和椭圆的方程;
(Ⅱ)求证:点在以线段为直径的圆上;
(Ⅲ)在直线上有两个不重合的动点,以为直径且过点的所有圆中,求面积最小的圆的半径长.
(1)
(2)(2)把直线与椭圆方程联立,消去y,设出A,B的坐标,则可求得x1+x2=-3x1x2,进而分别表示出F1A和AF1B斜率,进而求得kF1A•kF1B的值
(3)

试题分析:解: (Ⅰ)可知直线              2分
,,解得,
所以,椭圆的方程为.             4分
(Ⅱ)联立方程组  整理得:,
,则,
因为,所以


所以点在以线段为直径的圆上.            10分
(3)面积最小的圆的半径长应是点 到直线的距离.  11分
设为 即面积最小的圆的半径长为   13分
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:



4

1

2
4

2
(1)求的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,
(i) 求的最值.
(ii) 求四边形ABCD的面积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点为在抛物线上,且,弦的中点在其准线上的射影为,则的最大值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,过抛物线焦点的直线依次交抛物线与圆于点A、B、C、D,则的值是________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆上,且满足是坐标原点),,若椭圆的离心率为.
(1)若的面积等于,求椭圆的方程;
(2)设直线与(1)中的椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆:的左右焦点,为直线上一点,是底角为30°的等腰三角形,则的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个顶点的坐标,焦距的一半为3的椭圆的标准方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于曲线,给出下面四个命题:
①曲线不可能表示椭圆;   ②当时,曲线表示椭圆;
③若曲线表示双曲线,则
④若曲线表示焦点在轴上的椭圆,则
其中所有正确命题的序号为__    _ __

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是双曲线的左、右焦点,若关于渐近线的对称点恰落在以为圆心,为半径的圆上,则的离心率为( )
A.B.C.D.

查看答案和解析>>

同步练习册答案