精英家教网 > 高中数学 > 题目详情
如图,过抛物线焦点的直线依次交抛物线与圆于点A、B、C、D,则的值是________
1

试题分析:当直线过焦点F且垂直于x轴时,|AD|=2p=4,|BC|=2r=2,由抛物线与圆的对称性知:|AB|=|CD|=1,所以|AB|•|CD|=1.解:由特殊化原则,当直线过焦点F且垂直于x轴时, |AD|=2p=4, |BC|=2r=2,由抛物线与圆的对称性知: |AB|=|CD|=1,所以|AB|•|CD|=1;故答案为1.
点评:本题以抛物线与圆为载体,考查圆的性质和应用,解题时恰当地选取取特殊值,能够有效地简化运算。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知为双曲线C:的左、右焦点,点P在C上,,则=                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的离心率为,则其渐近线方程为( )
A.y=±2xB.y=C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线的焦点在抛物线上.

(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过抛物线上的动点作抛物线的两条切线, 切点为.若的斜率乘积为,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过点C(0,1)的椭圆的离心率为,椭圆与x轴交于两点,过点C的直线与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.

(I)当直线过椭圆右焦点时,求线段CD的长;
(II)当点P异于点B时,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(Ⅰ)若,求外接圆的方程;
(Ⅱ)若直线与椭圆相交于两点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左焦点为,直线轴交于点,过点且倾斜角为30°的直线交椭圆于两点.
(Ⅰ)求直线和椭圆的方程;
(Ⅱ)求证:点在以线段为直径的圆上;
(Ⅲ)在直线上有两个不重合的动点,以为直径且过点的所有圆中,求面积最小的圆的半径长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:的离心率为,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线右支上一点,分别为双曲线的左、右焦点,点到△三边的距离相等,若成立,则
A.B.C.D.

查看答案和解析>>

同步练习册答案