精英家教网 > 高中数学 > 题目详情
已知分别是双曲线的左、右焦点,若关于渐近线的对称点恰落在以为圆心,为半径的圆上,则的离心率为( )
A.B.C.D.

试题分析:设关于渐近线的对称点为A(x,y),则,另外,双曲线的渐近线为,其斜率,又求得线段的中点,且,则有,解得,由
得:,则,将x和y代入得:,化为,又因为,所以,解得。故选D。

点评:求曲线的性质是必考点,做这类题目需结合图形才能较好的解决问题,因而画图是前提。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆的左焦点为,直线轴交于点,过点且倾斜角为30°的直线交椭圆于两点.
(Ⅰ)求直线和椭圆的方程;
(Ⅱ)求证:点在以线段为直径的圆上;
(Ⅲ)在直线上有两个不重合的动点,以为直径且过点的所有圆中,求面积最小的圆的半径长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为,点为抛物线上的动点,点为其准线上的动点,当为等边三角形时,其面积为
A.B.4C.6D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线右支上一点,分别为双曲线的左、右焦点,点到△三边的距离相等,若成立,则
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,设点),直线:,点在直线上移动,是线段轴的交点, 过分别作直线,使 .

(1)求动点的轨迹的方程;
(2)在直线上任取一点做曲线的两条切线,设切点为,求证:直线恒过一定点;
(3)对(2)求证:当直线的斜率存在时,直线的斜率的倒数成等差数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N  (点M在点N的右侧),且。椭圆D:的焦距等于,且过点

( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M的动直线与椭圆D交于A、B两点,若点N在以弦AB为直径的圆的外部,求直线斜率的范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率为的椭圆上的点到左焦点的最长距离为

(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点轴上,且使得的一条内角平分线,则称点为该椭圆的“左特征点”,求椭圆的“左特征点”的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点F是椭圆的一个焦点,且它们的交点M到F的距离为,则椭圆的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案