精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系中,设点),直线:,点在直线上移动,是线段轴的交点, 过分别作直线,使 .

(1)求动点的轨迹的方程;
(2)在直线上任取一点做曲线的两条切线,设切点为,求证:直线恒过一定点;
(3)对(2)求证:当直线的斜率存在时,直线的斜率的倒数成等差数列.
(1).(2)利用导数法求出直线AB的方程,然后再利用直线横过定点知识解决.(3)用坐标表示出斜率,然后再利用等差中项的知识证明即可

试题分析:(1)依题意知,点是线段的中点,且
是线段的垂直平分线.∴
故动点的轨迹是以为焦点,为准线的抛物线,其方程为:
(2)设,两切点为 
,求导得
∴两条切线方程为 ① 
②                 
对于方程①,代入点得,,又
整理得:
同理对方程②有
为方程的两根.
  ③                            
设直线的斜率为
所以直线的方程为,展开得:
,代入③得:
∴直线恒过定点.                            
(3) 证明:由(2)的结论,设 
且有,  
                  

=  
又∵,所以
即直线的斜率倒数成等差数列.  
点评:解答抛物线综合题时,应根据其几何特征熟练的转化为数量关系(如方程、函数),再结合代数方法解答,这就要学生在解决问题时要充分利用数形结合、设而不求、弦长公式及韦达定理综合思考,重视对称思想、函数与方程思想、等价转化思想的应用
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

是椭圆:的左右焦点,为直线上一点,是底角为30°的等腰三角形,则的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设是圆上的动点,点轴上投影,上一点,且.当在圆上运动时,点的轨迹为曲线. 过点且倾斜角为的直线交曲线两点.
(1)求曲线的方程;
(2)若点F是曲线的右焦点且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的渐近线与圆)相切,则
A.5B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是双曲线的左、右焦点,若关于渐近线的对称点恰落在以为圆心,为半径的圆上,则的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:)离心率为,上顶点M,右顶点N,直线MN与圆相切,斜率为k的直线l经过椭圆E在正半轴的焦点F,且交E于A、B不同两点.
(1)求E的方程;
(2)若点G(m,0)且| GA|=| GB|,,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

曲线,曲线.自曲线上一点的两条切线切点分别为.

(1)若点的纵坐标为,求
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,直线的参数方程为(为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 求直线被曲线所截得的弦长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

极坐标系与直角坐标系有相同的长度单位,以原点为极点,以正半轴为极轴,已知曲线的极坐标方程为,曲线的参数方程是为参数,,射线与曲线交于极点外的三点
(Ⅰ)求证:
(Ⅱ)当时,两点在曲线上,求的值.

查看答案和解析>>

同步练习册答案