精英家教网 > 高中数学 > 题目详情
已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。
(I)     (II)存在定点R(0,0),相应的常数是 

试题分析:(I)设直线PC的方程为:
所以PC的方程为  
得P点的坐标为(3,1)。
可求得抛物线的标准方程为  
(II)设直线l的方程为,代入抛物线方程并整理得

   11分
时上式是一个与m无关的常数
所以存在定点R(0,0),相应的常数是 
点评:本题主要考查了直线与圆锥曲线的综合问题.研究直线与圆锥曲线位置关系的问题,通常有两种方法:一是转化为研究方程组的解的问题,利用直线方程与圆锥曲线方程所组成的方程组消去一个变量后,将交点问题(包括公共点个数、与交点坐标有关的问题)转化为一元二次方程根的问题,结合根与系数的关系及判别式解决问题;二是运用数形结合的思想.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆上,且满足是坐标原点),,若椭圆的离心率为.
(1)若的面积等于,求椭圆的方程;
(2)设直线与(1)中的椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知焦距为的双曲线的焦点在x轴上,且过点P .
(Ⅰ)求该双曲线方程 ;
(Ⅱ)若直线m经过该双曲线的右焦点且斜率为1,求直线m被双曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线=1的两条渐近线互相垂直,那么该双曲线的离心率是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆与抛物线的焦点均在轴上,的中心及的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:










(Ⅰ)求曲线的标准方程;
(Ⅱ)设直线过抛物线的焦点与椭圆交于不同的两点,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是双曲线的左、右焦点,若关于渐近线的对称点恰落在以为圆心,为半径的圆上,则的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点到点的距离与到直线的距离之比为定值,记的轨迹为

(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹两点.
(i)证明:
(ii)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线,过右焦点作双曲线的其中一条渐近线的垂线,垂足为,交另一条渐近线于点,若(其中为坐标原点),则双曲线的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线)的一条渐近线被圆截得的弦长为,则双曲线的离心率为
A.B.
C.D.

查看答案和解析>>

同步练习册答案