精英家教网 > 高中数学 > 题目详情
已知动点到点的距离与到直线的距离之比为定值,记的轨迹为

(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹两点.
(i)证明:
(ii)求的最大值.
(1),C的图象是椭圆.
(2)(i) 。(ii)当过点时取最大值2

试题分析:(1)设,由题动点M满足:         1分

其中:
...2分
代入,化简得:
C的图象是椭圆,如图所示.          4分
(2)(i)设
          5分
         6分
                       7分
(ii)解法一、设切线为,由题与圆相切,得
8分
再由,得         9分
          10分
由(i)知,所以
11分
                      . 2分
,当时,取最大值2         13分
的最大值为2.          ...14分
解法二、
由(i)同理得,则

过点时取最大值2
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。涉及弦长问题,一般要利用韦达定理,简化解题过程。本题“几何味”较浓,应认真分析几何特征。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆的两焦点是椭圆上一点且的等差中项,则此椭圆的标准方程为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,
(1)求抛物线的方程;
(2)设点是抛物线上的两点,的角平分线与轴垂直,求直线AB的斜率;
(3)在(2)的条件下,若直线过点,求弦的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

焦点在x轴上的椭圆的离心率的最大值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N  (点M在点N的右侧),且。椭圆D:的焦距等于,且过点

( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M的动直线与椭圆D交于A、B两点,若点N在以弦AB为直径的圆的外部,求直线斜率的范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线与抛物线交于两点,则线段的中点坐标是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆轴负半轴交于点为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接于点D。
(1)如果,求椭圆的离心率; 
(2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的渐近线与圆有公共点,则该双曲线的离心率的取值范围是___________.

查看答案和解析>>

同步练习册答案