精英家教网 > 高中数学 > 题目详情
如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N  (点M在点N的右侧),且。椭圆D:的焦距等于,且过点

( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M的动直线与椭圆D交于A、B两点,若点N在以弦AB为直径的圆的外部,求直线斜率的范围。
(1)
(2)

试题分析:)解:(1)设圆半径为r, 由条件知圆心C(r,2)

∵圆在x轴截得弦长MN=3
 ∴r=
∴圆C的方程为:  (3分)
上面方程中令y=0,得 解得x=1或x="4," ∵点M在点N的右侧
∴M(4,0),N(1,0)
∵椭圆焦距2c=2=2  ∴c=1   ∴椭圆方程可化为:
又椭圆过点( 代入椭圆方程得:
解得(舍)   ∴椭圆方程为:           (6分)
(2)设直线l的方程为:y="k(x-4)" 代入椭圆方程化简得:

△=32>0       
设A(x1,y1),B(x2,y2)      则x1+x2=   x1x2=       (7分)
∵点N在以弦AB为直径的圆的外部,>0
∴(>0
即:>0
-(+>0
化简得:        ∴    ∴k∈       
点评:主要是考查了圆的方程,以及椭圆性质的运用,并联立方程组设而不求的数学思想的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

一个顶点的坐标,焦距的一半为3的椭圆的标准方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线=1的两条渐近线互相垂直,那么该双曲线的离心率是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是双曲线的左、右焦点,若关于渐近线的对称点恰落在以为圆心,为半径的圆上,则的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点到点的距离与到直线的距离之比为定值,记的轨迹为

(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹两点.
(i)证明:
(ii)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

曲线,曲线.自曲线上一点的两条切线切点分别为.

(1)若点的纵坐标为,求
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线,过右焦点作双曲线的其中一条渐近线的垂线,垂足为,交另一条渐近线于点,若(其中为坐标原点),则双曲线的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线p>0)的准线与圆相切,则p的值为(    )
A.10B.6 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为,且两条曲线在第一象限的交点为是以为底边的等腰三角形,若,椭圆与双曲线的离心率分别为,则的取值范围是(   )
A.(1,B.()  C.(D.(,+

查看答案和解析>>

同步练习册答案