精英家教网 > 高中数学 > 题目详情
焦点在x轴上的椭圆的离心率的最大值为(    )
A.B.C.D.
B

试题分析:焦点在x轴上,所以
,当且仅当时等号成立
点评:求椭圆离心率关键是找到关于的其次方程或其次不等式,进而求解可得离心率的值或范围
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别是,Q是椭圆外的动点,满足.点是线段与该椭圆的交点,点T是的中点.

(Ⅰ)设为点的横坐标,证明
(Ⅱ)求点T的轨迹的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左顶点,过右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以双曲线的焦点为顶点,顶点为焦点的椭圆的标准方程是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆与抛物线的焦点均在轴上,的中心及的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:










(Ⅰ)求曲线的标准方程;
(Ⅱ)设直线过抛物线的焦点与椭圆交于不同的两点,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,其左、右焦点分别为,短轴长为,点在椭圆上,且满足的周长为6.
(Ⅰ)求椭圆的方程;;
(Ⅱ)设过点的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点到点的距离与到直线的距离之比为定值,记的轨迹为

(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹两点.
(i)证明:
(ii)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法中,正确的有        
①若点是抛物线上一点,则该点到抛物线的焦点的距离是
②设为双曲线的两个焦点,为双曲线上一动点,,则的面积为
③设定圆上有一动点,圆内一定点的垂直平分线与半径的交点为点,则的轨迹为一椭圆;
④设抛物线焦点到准线的距离为,过抛物线焦点的直线交抛物线于A、B两点,则成等差数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的左、右焦点分别为为椭圆上异于长轴端点的一点,,△的内心为I,则(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案