分析 利用椭圆、双曲线的定义,求出|PF1|,|PF2|,结合∠F1PF2=60°,利用余弦定理和离心率公式,建立方程,即可求出e.
解答 解:设椭圆的长半轴长为a1,双曲线的实半轴长为a2,
焦距为2c,|PF1|=m,|PF2|=n,且不妨设m>n,
由m+n=2a1,m-n=2a2得m=a1+a2,n=a1-a2.
又∠F1PF2=60°,
∴4c2=m2+n2-mn=a12+3a22,
$\frac{{a}_{1}^{2}}{{c}^{2}}+\frac{{3a}_{2}^{2}}{{c}^{2}}=4$,
由椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,
则$\frac{1}{(\frac{\sqrt{2}}{2})^{2}}+\frac{3}{{e}^{2}}=4$,
解得e=$\frac{\sqrt{6}}{2}$,
故答案为:$\frac{\sqrt{6}}{2}$.
点评 本题考查椭圆、双曲线的定义与性质,主要考查离心率的求法,同时考查余弦定理,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 14$\sqrt{3}$ | B. | 10$\sqrt{3}$ | C. | 12 | D. | 16$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | 0 | C. | -$\frac{1}{2}$或0 | D. | 0或7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com