精英家教网 > 高中数学 > 题目详情

已知数列{an}中a1=2,an+1=(-1)( an+2),n=1,2,3,….(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{an}中b1=2,bn+1=,n=1,2,3,….证明:<bn≤a4n-3,n=1,2,3,…

(Ⅰ) an=[(-1)n+1]  (Ⅱ)见解析
(Ⅰ)由题设:an+1=(-1)(an+2)=(-1)(an-)+(-1)(2+),
=(-1)(an-)+,∴an+1-=(-1)(an-).
所以,数列{an-}a是首项为2-,公比为-1)的等比数列,an-=(-1)n
即an的通项公式为an=[(-1)n+1],n=1,2,3,….
(Ⅱ)用数学归纳法证明.
(ⅰ)当n=1时,因<2,b1=a1=2,所以<b1≤a1,结论成立.
(ⅱ)假设当n=k时,结论成立,即<bk≤a4k-3,,也即0<bn-≤a4k-3-,
当n=k+1时,bk+1-=-==>0,
又<=3-2,所以bk+1-=<(3-2)2(bk-)≤(-1)4(a4k-3-)=a4k+1-也就是说,当n=k+1时,结论成立.
根据(ⅰ)和(ⅱ)知<bn≤a4n-3,n=1,2,3,…
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=-10,且经过点A(an,an+1),B(2n,2n+2)两点的直线斜率为2,n∈N*
(1)求证数列{
an2n
}
是等差数列,并求数列{an}的通项公式;
(2)求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=3n+4,若an=13,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1为由曲线y=
x
,直线y=x-2及y轴
所围成图形的面积的
3
32
Sn为该数列的前n项和,且Sn+1=an(1-an+1)+Sn
(1)求数列{an}的通项公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
对一切正整数n都成立,求正整数a的最大值,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an对任意x∈N*恒成立,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

查看答案和解析>>

同步练习册答案