精英家教网 > 高中数学 > 题目详情

【题目】以下四个命题中其中真命题个数是(  )

为了了解800名学生的成绩,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k40

线性回归直线 恒过样本点的中心

随机变量ξ服从正态分布N2σ2)(σ0),若在(﹣1)内取值的概率为0.1,则在(23)内的概率为0.4

若事件满足关系,则事件互斥.

A. 0 B. 1 C. 2 D. 3

【答案】C

【解析】①为了了解800名学生的成绩,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k800÷40=20;故①错误,

②线性回归直线恒过样本点的中心;正确,故②正确,

③随机变量ξ服从正态分布N(2,σ2)(σ>0),若在(∞,1)内取值的概率为0.1,则在(1,2)内取值的概率为0.50.1=0.4,

则在(2,3)内的概率为在(1,2)内取值的概率为0.4;故③正确,

由互斥事件的定义可得若事件满足关系,则事件对立,故④错误.

四个命题中其中真命题个数是2个.

本题选择C选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知k∈R, =(k,1), =(2,4),若| |< ,则△ABC是钝角三角形的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分别为线段AB,BC上的点,且CD=DE= ,CE=2EB=2

(1)证明:DE⊥平面PCD
(2)求二面角B﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别是a,b,c,B是钝角,且 a=2bsinA.
(1)求B的大小;
(2)若△ABC的面积为 ,且b=7,求a+c的值;
(3)若b=6,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=4x3+ax2+bx+5在x= 与x=﹣1时有极值.
(1)写出函数的解析式;
(2)指出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2000多年前,古希腊大数学家阿波罗尼奥斯((Apollonius)发现:平面截圆锥的截口曲线是圆锥曲线.已知圆锥的高为 为地面直径,顶角为,那么不过顶点的平面;与夹角时,截口曲线为椭圆;与夹角时,截口曲线为抛物线;与夹角时,截口曲线为双曲线.如图,底面内的直线,过的平面截圆锥得到的曲线为椭圆,其中与的交点为,可知为长轴.那么当在线段上运动时,截口曲线的短轴顶点的轨迹为( )

A. 圆的部分 B. 椭圆的部分 C. 双曲线的部分 D. 抛物线的部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面是梯形,且, 平面中点,

)求证: 平面

)若,求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.

(1)求证:EF⊥平面PAC;
(2)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求 的值.

查看答案和解析>>

同步练习册答案