精英家教网 > 高中数学 > 题目详情
6.已知集合A={0,1},则满足X⊆A的非空集合X的个数是(  )
A.1B.2C.3D.4

分析 利用列举法求得集合X即可.

解答 解:依题意得:X={0}或X={1}或X={0,1},共有3个.
故选:C.

点评 本题考查了子集和真子集.对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=sinx+$\sqrt{3}$cosx,则下列命题正确的是①③④.(填上你认为正确的所有命题的序号)
①函数f(x)(x∈[0,$\frac{π}{2}$])的单调递增区间是[0,$\frac{π}{6}$];
②函数f(x)的图象关于点(-$\frac{π}{6}$,0)对称;
③函数f(x)的图象向左平移m(m>0)个单位长度后,所得的图象关于y轴对称,则m的最小值是$\frac{π}{6}$;
④若实数m使得方程f(x)=m在[0,2π]上恰好有三个实数解x1,x2,x3,则x1+x2+x3=$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和为Sn=n(2n+1),则a10=39.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-3)}}$的定义域为(  )
A.($\frac{3}{2}$,+∞)B.(2,+∞)C.(0,$\frac{3}{2}$)D.($\frac{3}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若复数z=a-2+ai(a∈R)为纯虚数,则|a+i|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)是定义在R上的奇函数,且在(-∞,0]上是增函数,若f(a-2)>-f(a),则实数a的取值范围是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从某校高三年级抽查100名男同学,如果以身高达到170cm作为达标的标准,对抽取的100名男同学,得到以下列联表:
  身高达标 身高不达标 总计
 积极参加体育锻炼 40  75
 不
积极参加体育锻炼
 10  
 总计   100
(1)请完成上表;
(2)能否在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系(K2的观察值精确到0.001)?
参考:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)^{2}}$
 P(k2≥k0 0.15 0.10
 k0 2.072 2.706

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.连掷两次骰子分别得到点数m,n,向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(-1,1),若△ABC中$\overrightarrow{AB}$与$\overrightarrow{a}$同向,$\overrightarrow{CB}$与$\overrightarrow{b}$反向,则∠ABC是钝角的概率是$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=-4x+b,且不等式|f(x)|<c的解集为{x|-1<x<2}.
(1)求b的值;
(2)解关于x的不等式(x+m)•f(x)>0(m∈R).

查看答案和解析>>

同步练习册答案