精英家教网 > 高中数学 > 题目详情
11.已知f(x)是定义在R上的奇函数,且在(-∞,0]上是增函数,若f(a-2)>-f(a),则实数a的取值范围是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

分析 根据函数奇偶性和单调性之间的关系解不等式即可.

解答 解:∵f(x)是定义在R上的奇函数,且在(-∞,0]上是增函数,
∴f(x)在(-∞,+∞)上为增函数,
若f(a-2)>-f(a).
f(a-2)>f(-a).
则a-2>-a,
即a>1,
故选:D

点评 本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系判断函数f(x)的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a$=(-cos(π-θ),sin(-θ)),$\overrightarrow b$=([cos($\frac{π}{4}$-$\frac{θ}{2}$)+sin($\frac{π}{4}$-$\frac{θ}{2}$)][cos($\frac{π}{4}$-$\frac{θ}{2}$)-sin($\frac{π}{4}$-$\frac{θ}{2}$)],2cos2$\frac{θ}{2}$-1).
(1)求证:$\overrightarrow a$⊥$\overrightarrow b$
(2)设$\overrightarrow x$=$\overrightarrow a$+(t2+3)$\overrightarrow b$,$\overrightarrow y$=-k$\overrightarrow a$+t$\overrightarrow b$,g(t)=$\frac{{k+λ{t^2}}}{t}$(λ∈[-8,0]),若存在不等于0的实数k和t(t∈[1,2]),满足$\overrightarrow x$⊥$\overrightarrow y$,试求g(t)的最小值h(λ),并求出h(λ)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin(2x+$\frac{π}{3}$)+1;
(1)求函数f(x)的单调递增区间;
(2)若存在区间[a,b](a,b∈R且a<b),使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=$\frac{a+4i}{1+ai}$,a>0,且z=$\overline{z}$,若1+ai是关于x的方程x2+bx+c=0的一根,则b,c分别为(  )
A.4,-8B.2,-5C.-4,8D.-2,5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={0,1},则满足X⊆A的非空集合X的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.
(1)计算f(2)+f($\frac{1}{2}$)、f(-5)+f(-$\frac{1}{5}$)、f($\sqrt{2}$)+f($\frac{\sqrt{2}}{2}$)的值;
(2)根据(1)中的计算结果,归纳猜想关于函数y=f(x)的一般性结论,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.4名优秀学生全部保送到3所学校去,每所学校至少去一名学生,则不同的保送方案有(  )
A.12种B.72种C.18种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a=${2}^{\frac{1}{3}}$,b=${3}^{\frac{1}{3}}$,将a,b用“<”连接为a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x∈[1,9],执行如图所示的程序框图,则输出的x不小于55的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

同步练习册答案