精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=2sin(2x+$\frac{π}{3}$)+1;
(1)求函数f(x)的单调递增区间;
(2)若存在区间[a,b](a,b∈R且a<b),使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b-a的最小值.

分析 (1)由条件利用正弦函数的单调性求得函数f(x)的单调递增区间.
(2)令f(x)=0,求出 x的值,可得相邻的零点之间的间隔依次为$\frac{π}{3}$、$\frac{2π}{3}$.f(x)在[a,b]上至少含有6个零点,等价于b-a的最小值为2×$\frac{2π}{3}$+3×$\frac{π}{3}$.

解答 解:(1)对于函数f(x)=2sin(2x+$\frac{π}{3}$)+1,令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈z,
求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,可得函数的增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈z.
(2)令f(x)=0,求出 sin(2x+$\frac{π}{3}$)=-$\frac{1}{2}$,∴x=kπ-$\frac{π}{4}$,或x=kπ-$\frac{7π}{12}$,
故相邻的零点之间的间隔依次为$\frac{π}{3}$、$\frac{2π}{3}$.
y=f(x)在[a,b]上至少含有6个零点,等价于b-a的最小值为 2×$\frac{2π}{3}$+3×$\frac{π}{3}$=$\frac{7π}{3}$.

点评 本题主要考查正弦函数的图象,正弦函数的单调性和零点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.中国渔政310船在一次巡航执法作业中,发现在北偏东45°方向,相距12海里的水面上,有一艘不明国籍渔船正以每小时10海里的速度沿南偏东75°方向前进,中国渔政310船以每小时14海里的速度沿北偏东45°+α方向拦截该渔船,若要在最短的时间内拦截住,求中国渔政310船所需的时间和角α的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin45°cos15°-cos135°sin165°=(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,A=60°,b=2,△ABC的面积为4$\sqrt{3}$,则边c的值为(  )
A.16B.16$\sqrt{3}$C.8D.8$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和为Sn=n(2n+1),则a10=39.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若点P在曲线y=-$\frac{2}{3}$x3-2x2-x+3上移动,经过点P的切线的倾斜角为α,则角α的取值范围是(  )
A.[$\frac{π}{4}$,$\frac{π}{2}$)B.[$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,π)C.[0,$\frac{π}{3}$]∪($\frac{2π}{3}$,π)D.[0,$\frac{π}{4}$]∪($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-3)}}$的定义域为(  )
A.($\frac{3}{2}$,+∞)B.(2,+∞)C.(0,$\frac{3}{2}$)D.($\frac{3}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)是定义在R上的奇函数,且在(-∞,0]上是增函数,若f(a-2)>-f(a),则实数a的取值范围是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|x2-2x-3≤0},N={x|-2<x<2},则M∩N=(  )
A.B.{x|-1≤x<2}C.{x|-2≤x<-1}D.{x|2≤x<3}

查看答案和解析>>

同步练习册答案