精英家教网 > 高中数学 > 题目详情
过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.
(I)若k1>0,k2>0,证明:
(II)若点M到直线l的距离的最小值为,求抛物线E的方程.
【答案】分析:(Ⅰ)由抛物线方程求出抛物线的焦点坐标,写出两条直线的方程,由两条直线方程和抛物线方程联立求出圆M和圆N的圆心M和N的坐标,求出向量的坐标,求出数量积后转化为关于k1和k2的表达式,利用基本不等式放缩后可证得结论;
(Ⅱ)利用抛物线的定义求出圆M和圆N的直径,结合(Ⅰ)中求出的圆M和圆N的圆心的坐标,写出两圆的方程,作差后得到两圆的公共弦所在直线方程,由点到直线的距离公式求出点M到直线l的距离,利用k1+k2=2转化为含有一个未知量的代数式,配方后求出最小值,由最小值等于求出p的值,则抛物线E的方程可求.
解答:解:(I) 由题意,抛物线E的焦点为,直线l1的方程为
,得
设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.
从而x1+x2=2pk1
所以点M的坐标为
同理可得点N的坐标为
于是
由题设k1+k2=2,k1>0,k2>0,k1≠k2,所以0<

(Ⅱ)由抛物线的定义得
所以,从而圆M的半径
故圆M的方程为
化简得
同理可得圆N的方程为
于是圆M,圆N的公共弦所在的直线l的方程为
又k2-k1≠0,k1+k2=2,则l的方程为x+2y=0.
因为p>0,所以点M到直线l的距离为
=
故当时,d取最小值.由题设,解得p=8.
故所求抛物线E的方程为x2=16y.
点评:本题考查了抛物线的标准方程,考查了平面向量数量积的运算,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福建)如图,等边三角形OAB的边长为8
3
,且其三个顶点均在抛物线E:x2=2py(p>0)上.
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q.证明以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.
(Ⅰ)若k1>0,k2>0,证明:
FM
FN
<2p2

(Ⅱ)若点M到直线l的距离的最小值为
7
5
5
,求抛物线E的方程.

查看答案和解析>>

科目:高中数学 来源:2013年普通高等学校招生全国统一考试湖南卷理数 题型:044

过抛物线E:x2=2py(p>0)的焦点F作斜率分别为k1,k2的两条不同的直线l1l2,且k1+k2=2,l1与E相交于点A,B,l2与E相交于点C,D.以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为l

(Ⅰ)若k1>0,k2>0,证明;

(Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程.

查看答案和解析>>

科目:高中数学 来源:湖南 题型:解答题

过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.
(I)若k1>0,k2>0,证明:
FM
FN
<2p2

(II)若点M到直线l的距离的最小值为
7
5
5
,求抛物线E的方程.

查看答案和解析>>

同步练习册答案