精英家教网 > 高中数学 > 题目详情
顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:
工序
时间
原料
粗加工精加工
原料A915
原料B621
则最短交货期为
 
 个工作日.
考点:算法的特点
专题:算法和程序框图
分析:先完成B的加工,再完成A的加工即可.
解答: 解:由题意,徒弟利用6天完成原料B的加工,由师傅利用21天完成精加工,与此同时,徒弟利用9天完成原料A的加工,最后由师傅利用15天完成精加工,故最短交货期为6+21+15=42 个工作日.
故答案为:42.
点评:本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg)300500
概率0.50.5
作物市场价格(元/kg)610
概率0.40.6
(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<θ<
π
2
,向量
a
=(sin2θ,cosθ),
b
=(1,-cosθ),若
a
b
=0,则tanθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=ln(e3x+1)+ax是偶函数,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[
π
6
π
2
]上具有单调性,且f(
π
2
)=f(
3
)=-f(
π
6
),则f(x)的最小正周期为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C经过点(2,2),且与
y2
4
-x2=1具有相同渐近线,则C的方程为
 
;渐近线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈[0,+∞),x3+x≥0”的否定是(  )
A、?x∈(-∞,0),x3+x<0
B、?x∈(-∞,0),x3+x≥0
C、?x0∈[0,+∞),x03+x0<0
D、?x0∈[0,+∞),x03+x0≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=(  )
A、
30
3
B、6
C、12
D、7
3

查看答案和解析>>

同步练习册答案