精英家教网 > 高中数学 > 题目详情
设0<θ<
π
2
,向量
a
=(sin2θ,cosθ),
b
=(1,-cosθ),若
a
b
=0,则tanθ=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由条件利用两个向量的数量积公式求得 2sinθcosθ-cos2θ=0,再利用同角三角函数的基本关系求得tanθ
解答: 解:∵
a
b
=sin2θ-cos2θ=2sinθcosθ-cos2θ=0,0<θ<
π
2

∴2sinθ-cosθ=0,∴tanθ=
1
2

故答案为:
1
2
点评:本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3-4x+a(a>0),若f(x)的三个零点分别为x1,x2,x3,且x1<x2<x3,则(  )
A、x1>-2
B、x12+x22
10
3
C、x3>2
D、x22+x32
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.
(Ⅰ)证明:四边形EFGH是矩形;
(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosx(sinx+cosx).
(Ⅰ)求f(
4
)的值;
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知双曲线C:
x2
a2
-y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).
(1)求双曲线C的方程;
(2)过C上一点P(x0,y0)(y0≠0)的直线l:
x0x
a2
-y0y=1与直线AF相交于点M,与直线x=
3
2
相交于点N.证明:当点P在C上移动时,
丨MF丨
丨NF丨
恒为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+1=
1
1-an
,a8=2,则a1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:
工序
时间
原料
粗加工精加工
原料A915
原料B621
则最短交货期为
 
 个工作日.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=(  )
A、
1
4
B、
1
3
C、
2
4
D、
2
3

查看答案和解析>>

同步练习册答案