精英家教网 > 高中数学 > 题目详情
如图,已知双曲线C:
x2
a2
-y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).
(1)求双曲线C的方程;
(2)过C上一点P(x0,y0)(y0≠0)的直线l:
x0x
a2
-y0y=1与直线AF相交于点M,与直线x=
3
2
相交于点N.证明:当点P在C上移动时,
丨MF丨
丨NF丨
恒为定值,并求此定值.
考点:直线与圆锥曲线的综合问题,直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:(1)依题意知,A(c,
c
a
),设B(t,-
t
a
),利用AB⊥OB,BF∥OA,可求得a=
3
,从而可得双曲线C的方程;
(2)易求A(2,
2
3
3
),l的方程为:
x0x
3
-y0y=1,直线l:
x0x
a2
-y0y=1与直线AF相交于点M,与直线x=
3
2
相交于点N,可求得M(2,
2x0-3
3y0
),N(
3
2
x0-2
2y0
),于是化简
丨MF丨
丨NF丨
=
|
2x0-3
3y0
|
1
4
+(
x0-2
2y0
)
2
可得其值为
2
3
3
,于是原结论得证.
解答: (1)解:依题意知,A(c,
c
a
),设B(t,-
t
a
),
∵AB⊥OB,BF∥OA,∴
c+t
a
c-t
-1
a
=-1,
1
a
=
t
a(c-t)

整理得:t=
c
2
,a=
3

∴双曲线C的方程为
x2
3
-y2=1;
(2)证明:由(1)知A(2,
2
3
3
),l的方程为:
x0x
3
-y0y=1,
又F(2,0),直线l:
x0x
a2
-y0y=1与直线AF相交于点M,与直线x=
3
2
相交于点N.
于是可得M(2,
2x0-3
3y0
),N(
3
2
x0-2
2y0
),
丨MF丨
丨NF丨
=
|
2x0-3
3y0
|
1
4
+(
x0-2
2y0
)
2
=
2|2x0-3|
3
y02+(x0-2)2
=
2|2x0-3|
3
x02
3
-1+(x0-2)2
=
2|2x0-3|
|2x0-3|
3
=
2
3
3
点评:本题考查直线与圆锥曲线的综合问题,着重考查直线与圆锥曲线的位置关系等基础知识,推理论证能力、运算求解能力、函数与方程思想,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y为正实数,则(  )
A、lg(3x+3y)=lg3x+lg3y
B、lg3x+y=lg3x•lg3y
C、lg3xy=lg3x+lg3y
D、lg3x+y=lg3x+lg3y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.
(Ⅰ)求d及Sn
(Ⅱ)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=
7
,EA=2,∠ADC=
3
,∠BEC=
π
3

(Ⅰ)求sin∠CED的值;
(Ⅱ)求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<θ<
π
2
,向量
a
=(sin2θ,cosθ),
b
=(1,-cosθ),若
a
b
=0,则tanθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,若输入n=3,则输出T=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=ln(e3x+1)+ax是偶函数,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比为q的等比数列,则“q>1”是“{an}”为递增数列的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案