精英家教网 > 高中数学 > 题目详情
是椭圆上的两点,点是线段的中点,线段的垂直平分线与椭圆相交于两点.
(Ⅰ)求直线的方程;
(Ⅱ)求以线段的中点为圆心且与直线相切的圆的方程.
(Ⅰ)法1:依题意显然的斜率存在,可设直线的方程为
整理得 . ①   ---------------2分
是方程①的两个不同的根,
,  ②                --------4分
,由是线段的中点,得
,∴
解得,这个值满足②式,
于是,直线的方程为,即    --------6分
法2:设,则有
     --------2分
依题意,,∴.           ---------------------4分
的中点, ∴,从而
直线的方程为,即.   ----------------6分
(Ⅱ)∵垂直平分,∴直线的方程为,即
代入椭圆方程,整理得. ③            ---------------8分
又设的中点为,则是方程③的两根,
.-----10分
到直线的距离,故所求的以线段的中点为圆心且与直线相切的圆的方程为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
已知椭圆 ()的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程; 
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线交于点.
(i)求点的轨迹的方程;
(ii)若为点的轨迹的过点的两条相互垂直的弦,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直线经过椭圆S:的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C: 的离心率为,椭圆C上任意一点到椭圆两焦点的距离之和为6.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A,B两点,点P(0,1),且满足PA=PB,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知+=1的焦点F1、F2,在直线lx+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在椭圆的焦点为,点p在椭圆上,若,则      
的大小为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上存在一点P,使得它对两个焦点的张角,则该椭圆的离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果函数y=|x|-1的图象与方程的曲线恰好有两个不同的公共点,则实数的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A1,A2,B是椭圆=1(a>b>0)的顶点(如图),直线l与椭圆交于异于顶点的P,Q两点,且l∥A2B,若椭圆的离心率是,且|A2B|=
(1)求此椭圆的方程;
(2)设直线A1P和直线BQ的倾斜角分别为α,β,试判断α+β是否为定值?若是,求出此定值;若不是,说明理由。

查看答案和解析>>

同步练习册答案