分析 (1)由题意可设抛物线的方程为y2=2px(p>0),运用抛物线的定义,可得4+$\frac{p}{2}$=6,解得p=4,进而得到抛物线的方程;
(2)求得直线方程,联立抛物线的方程,消去未知数,运用韦达定理,和弦长公式,计算即可得到所求值.
解答 解:(1)抛物线C的顶点在原点,焦点在x轴上,
且过一点P(4,m),
可设抛物线的方程为y2=2px(p>0),
P(4,m)到焦点的距离为6,
即有P到准线的距离为6,即4+$\frac{p}{2}$=6,
解得p=4,
即抛物线的标准方程为y2=8x;
(2)由F(2,0),k=tan$\frac{π}{4}$=1,直线方程为y=x-2,
联立直线与抛物线方程得:$\left\{\begin{array}{l}{{y}^{2}=8x}\\{y=x-2}\end{array}\right.$可得x2-12x+4=0,
设A(x1,y1),B(x2,y2),
由韦达定理知:x1+x2=12,
由|AB|=|AF|+|BF|=x1+x2+p,
可得|AB|=12+4=16.
点评 本题考查抛物线的定义、方程和性质,考查直线和抛物线方程联立,运用韦达定理,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x (℃) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x-2 | B. | y=x-2(0≤y≤1) | C. | y=x+2(-2≤x≤-1) | D. | y=x+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x≠0或≠2} | B. | (-∞,0)∪(2,+∞) | C. | (-∞,0]∪[2,+∞) | D. | (0,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com